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Foreword

Remote sensing by satellite-borne sensors is one of the most promising
methods for obtaining Arctic ice information from this remote and inaccessible
part of the earth. However, extracting ice type, concentration, and thickness,
as well as measuring lead statistics from satellite imagery, is difficult. The
complications of Arctic remote sensing are not yet resolved to the extent
necessary to provide all of the products required to support naval operations
in the Arctic. This report presents a new approach to image texture anal,..
t hat may have application to future sea-ice analysis. The technique is applied
to passive microwave imagery of sea ice, where ice classification capability
is demonstrated. This new -technique could also be applied to synthetic aperture
radar (SAR) imagery, where it may provide ice-type information from the
SAR to be flown on the European satellite ERS-l beginning in 1991.

W. B. Moseley J. B. Tupaz, Captain, USN
Technical Director Commanding Officer



Executive Summary

A new approach to image texture analysis is developed. The approach is
based on linear unmixing of texture measures calculated over an entire image
(called a global approach), as opposed to most present texture analysis
techniques that compute texture over small neighborhoods (called a local
approach). The new global paradigm is appropriate for images where spatial
scales of the texture variability are large with respect to the pixel spacing,
thereby making the local approach ineffective. Airborne passive microwave
imagery of Arctic sea ice contain textures that vary with ice-type. These ice
textures are of the type best treated by the global approach. Sea-ice imagery
are used as test data to evaluate the global techniques that are developed. Pure,
single ice-type images; synthetic mixtures formed by mosaicking pure ice-type
subimages in known proportions; and naturally occurring mixture images are
analyzed in the course of the study. "Proportions of first-year, second-year,
and multiyear ice within mixture images are yetrieved with root-mean-square
accuracies as low as 0.04 by the new method..This accuracy is adequate to
bu ubful in many Arctic studies, but more important, the global technique
seems promising for many other remote sensing and general image processing
applications. Research areas that are required to advance the global method
are enumerated. The most important advancement in support of the global
method would be the development of new image texture measures that exhibit
linear properties under mixing operations.
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A Global Approach to Image Texture Analysis
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Synopsis imaging, robotics, and others. Second, in the process
Texture is an important factor in the analysis of evaluating the texture analysis with the sea-ice data

of many ,ypes of imagery. One category of imagery of set, new insight is gained concerning the relationships
special interest to the Navy is remotely sensed imagery between ice image texture and the age and morphology

* of Arctic sea ice. Various types of sea ice are of sea ice.
characterized by different textures in ice imagery, Texture is normally considered to be a local property
whether the images are from a camera, an infrared within an image. In other words, texture at a given
scanner, a microwave scanner, or imaging radar. inage location in an image can be measured by examining
texture analysis, both visual and computerized is a small area immediately surrounding the point in
therefore a major tool used by the Arctic science question. Following this logic, most texture analysis

* community. algorithms are based on small, local (neighborhood)
The European Space Agency (ESA) is launching calculations. There arc, however, a class of textures

the ERS-1 satellite in 1991. The satellite will carry where the spatial scales of the texture are large with
a synthetic aperture radar (SAR) into a polar respect to sampling interval, or pixel size within the
orbit, The National Aeronautics and Space Administra- image. Textures are also found that require calculation
tior (NASA) is building a receiving and processing of texture statistics over large areas of the image in

* facility at the University of Alaska in Fairbanks for order to accomplish reliable discrimination of texture
ERS-1 SAR data from the Arctic region. The Navy types. The ice imagery analyzed in the appendix is
plans to use this SAR data at the Naval Polar Ocean representative of this class of textures, which cannot
Center in Suitland, Maryland, as a supplemental source be adequately discriminated using small neighborhood
of ice information to improve its operational Arctic (e.g., 3 x 3 pixel) operators. However, if the neigh-
products. One of the key technologies required to borhood size is increased to achieve more reliable

* insure effective utilization of SAR data is the ability estimates of low-frequency or spatially variable
to classify ice types based on texture within the SAR textures, then the probability increases that the
images. Therefore, this study in the appendix is timely neighborhood will encompass more than a single
in terms of potential Navy application. texture type, thereby confounding the calculated values

Other groups, principally the Environmental of texture parameters. The new paradigm for texture
Research Institute of Michigan and the Canadian analysis introduced here is termed a global, as opposed

* Center for Remote Sensing, are also conducting ice to a local, analysis. Since large areas are required to
classification studies on the basis of image texture. obtain stable statistics for the cla3s of textures under
An important follow-on to this study will be the consideration, the neighborhood is simply expanded
comparison of the texture analysis techniques to include the entire image. Texture measures calculated
developed here with those developed by these other from the entire image are then linearly unmixed to infer
researchers. the textural composition of the image, which

* necessarily leads to the observed global texture measure
values. Under the global approach, one does not know

Summary where in the image a particular type of texture occurs.
The appendix describes a new approach to image In essence then, the global approach is a means of

texture analysis and presents the application of that trading positional certainty for more accurate overall
technique to a set of sample imagery. The image data estimates of composition. In many applications

* set is airborne passive microwave images of Arctic sea accurate image composition information is more
ice. The products of this study are, therefore, twofold. important than precise positional information, so that
First, a new type of image texture analysis is developed this trade-off is advantageous.
that may have broad application to many branches of The appendix begins by describing the scanning
science, such as remote sensing, geology, medical system that generated the sea-ice imagery used as test
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data for texture analysis. The geometric and members for unmixing. The end-member selection
radiometric characteristics of that sensor that would techniques are described and compared. Accuracies are
impact texture in the recorded imagery are especially calculated for image proportions resulting from the
highlighted in that section. Analysis procedures various techniques.
required to avoid scanner artifacts in the texture data Natural mixtures are examined by using the synthetic
are established. mixture data set to investigato questions pertinrent to

The appendix then reviews image texture analysis, natural mixtures. These questions arise because natural
contrasts the local and global approaches, and textures have shifts in mean image intensity levels for
introduces the concept of a "feature space" (a common each texture class. This shift in means was artificially
term in pattern recognition). Six mathematical proper- removed in the first analysis of synthetic mixtures.
ties of texture measures, which are desirable in this Because of this mean shift, only six texture measures
study, are described and 25 candidate texture measures are suitable for natural mixture images. The synthetic
are defined. The desired characteristics serve as the mixtures are recreated, this time without adjusting the
yardstick for evaluating the candidate texture measures. mean intensity to a uniform value. The analysis shows

The first image data set is then presented. This data that the reduced number of texture variables and the
set consists of 64- x 64-pixel image fragments differences in the mean levels between texture classes
containing only a single ice type, which has been deter- do not significantiy degrade unmixing accuracy.
mined by prior expert interpretation of the images. The final step is the analysis of full-frame images
Values of the candidate texture measures are calculated containing natural mixtures of ice types. The analysis
for this image set, and the resulting numerical values of natural mixtures in the present study is limited
are analyzed to determine to what degree the candidate because of lack of appropriate images in the data set.
texture measures match the desired characteristics The work done here with natural, full-frame mixture
established in the previous section. Of the 25 candidate images indicates that root-mean-square, ice-type
texture variables evaluated, only 12 are shown to be proportion errors on the order of 0.05 may be possible
suitable for use in global texture analysis, and then only for simple, natural mixtures.
if the mean brightness values are identical for each
texture class. For textures with varying means, only
six texture variables are found to he useful. Conclusions and Recommendations

The unmixing of globally calculated texture data to Conclusions resulting from this study are divided
infer textural composition of the image utilizes the into two categories. The first deals with the global
CABFAC and QMODEL computer codes, which texture analysis paradigm, which was the major thrust
require that the data matrix have constant row sums. of this work. These conclusions cover matters of broad
Image texture data are not intrinsically constant-sum, applicability to the field of image processing. The
This problem is addressed and a data matrix transfor- second category deals with information learned about
mation, which will put the data into a constant-sum sea ice as a result of using imagery of that type as test
form in a manner that reduces the information loss data.
occurring as a result of the constant-sum formation
process, is defined. The Global Texture Analysis Paradigm

The mathematical model for linear unmixing is * The global approach to texture analysis was
described, and the appropriateness of that model developed and applied to a test data set with sufficiently
is evaluated using texture measures calculated for the promising results that it can be concluded that the
64- x 64-pixel, pure ice-type samples. Once the approach may have merit for many image texture
validity of the linear unmixing model has been problems.
established, the pure samples are "unmixed," even * Both mandatory and desirable characteristics
though they are not mixtures. The compositions of of texture measures were enumerated. Of 25 candidate
these image samples should be 100% for the ice class texture measures evaluated, none met all of the
to which they belong and 0% for all other ice classes, desirable and mandatory characteristics, and only
Comparison of the actual compositions calculated by two-local homogeneity and Laws' energy masks-
unmixing with these known compositions provides the possessed the mandatory characteristics, which
first quantitative estimate of the ice-type discrimina- included correlation with ice type and linear behavior
tion power of global texture analysis. under formation of mixtures. Here, of course, the key

The next step is the analysis of images that contain item is the linear mixing property. Investigation of
more than one ice type. The mixture images analyzed additional texture measures that exhibit this
here are synthetic mixtures created by inosaicking characteristic woui,i support further exploitation of the
the single ice-type images in various proportions. The global texture analysis approach.
unmixing process is conducted for this synthetic data a A procedure was developed and applied here to
set. Various techniques are applied to select end deal with the nonconstant-sum nature of image texture
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variables. Since this work was performed, a variable- classification work involved thresholding on image
sum version of CABFAC and QMODEL has become brightness. They concluded that brightness temperature
available. The analysis described should be repeated thresholding alone was not adequate for classification

* using these new programs. If the SIFT used here of ice types. The recommendation in that report was

resulted in significant loss of ice-type information, the that image texture be included, and provided the

repeated analysis with the new code would give better stimulus for the present study. We demonstrated here
results, indicating even more promise for the global that texture can lead to calculation of accurate
techniques. (accuracy depending on image size) icc-type propor.

* The global approach should be applied to other tions. Furthermore, the accuracy has been shown to

* texture data sets to see if it does indeed have broad improve by an approximate factor of two when

applicability, mean brightness levels are added to texture data.

* Further study should be initiated to deal with the Unfortunately, Eppler's previous work (1984) did not

problem of complexity occurring in natural images. give quantitative estimates of image composition

* Failure to solve the complexity problem does not accuracies resulting from the thresholding method, so

eliminate the global method from practical application, direct comparison could not be made with the present

* There may bc certain applications, industrial inspec- results.

tion and control, for example, where the scenes are * The proportion errors as a function of image size,

always simp'e rnixtures and this technique is applicable which are derived in the appendix, indicate what order

withou:. piesimaplificaton. of spatial scales are required to adequately characterize

* Global unmixing of image texture is inexorably ice types. The 312 x 512 pixel images that resulted in

linked to a trade-off. Proportion accuracy can be proportion errors of approximately 0.05 represent

exchau 4. v1f, positional uncertainty. If the global area 6.4 km 2 of ice surface.

is large, twnu proportionr can be extracted quite * The most critical hurdle to practical application

accuratel;., ,, es not know where within the of the global technique to ice analysis is believed to
giobal area i.he par ti-,ei tk. texture in question is located, be the development of a preprocessing step that will
Conversely, as the giob area is made smaller to identify and simplify areas of complex textural
pinpoint th locatin of a fet.r.. the proportion filled structure.

-O by tht texture featre can be measured with less n auiiig the auuvc can uC accomplished, this -
eel txt r This s ai sugges th t texture analysis scneme should be applied to another
ce~r¢alaty. This situation sugge.st-s that a pyramid KRMS data set, where adequate representation of the
approach could be advantageously applied. Large areas various ice types will permit complete unmixing using
coa-ld be analyzed for maximum accuracy followed by only natural images.
analysis of progressively smaller areas in selected parts * The real future of ice-texture analysis lies with SAR
of the image where it is judged to be advantageous rather than with passive microwave sensors. The
b ased on criteria that would be unique to a given KRMS is a research tool, but operationally the SAR
application, is the sensor of the future. The ERS-l satellite will have

Seaic Scia SAR in s'ace in 1991 and for the foreseeable future
Sea-ice Science thereafter NASA is establishing a receiving facility in

* Proportions of first-year, second-year, and Fairbanks, Alaska, to receive that data over a large
multiyear ice types in samples extracted from KRMS portion of the Arctic. The Navy Polar Oceanography
images can be calculated with useful accuracy using Center in Suitland, Maryland, is planning to use this
linear unmixing of globally determined texture SAR data to generate its operational ice products for
measures. the U.S. Navy. Clearly, if the texture analysis tech-

* Dr. Duane Eppler of the Naval Ocean Research niques developed here could be extended to SAR
and Development Activity (1984) and others have imagery, then the potential payoff would be large in
classified ice types in the same KRMS data set. Their terms of practical application.
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ABSTRACT

A new approach to image texture analysis is developed. The approach

is based on linear unmixing of texture measures calculated over an entire image

(called a global approach), as opposed to most present texture analysis tech-

niques that compute texture over small neighboxhoods (called a local approach).

The new global paradigm is appropriate for images where spatial scales of the

texture variability are large with respect to the pixel spacing, thereby making

the local approach ineffective. Airborne passive microwave imagery of Arctic sea

ice contain textures that vary with ice-type. These ice textures are of the type

best treated by the global approach. Sea-ice imagery are used as test data to

evaluate the global techniques that are developed. Pure, single ice-type images;

synthetic mixtures formed by mosaicking pure ice-type subimages in known pro-

portions; and naturally occurring mixture images are analyzed in the course of

the study. Proportions of first-year, second-year, and multiyear ice within mix-

ture images are retrieved with root-mean-square accuracies as low as 0.04 by

the new method. This accuracy is adequate to be useful in many Arctic stud-

ies, but more important, the global technique seems promising for many other

remote sensing and general image processing applications. Research areas that

are required to advance the global method are enumerated. The most important

advancement in support of the global method would be the development new

image texture measures that exhibit linear properties under mixing operations.
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I. INTRODUCTION

This dissertation describes a new approach to image texture analysis and

presents the application of that technique to a set of sample imagery. The image

data set is airborne passive microwave images of Arctic sea ice, such as shown in

Figure I-1. The products of this study are, therefore, twofold. First, a new type

of image texture analysis is developed that may have broad application to many

branches of science, such rns remote sensing, geology, medical imaging, robotics,

and others. Second, in the process of evaluating the texture analysis with the

sea-ice data set, new insight is gained concerning the relationships between ice

image texture and the age and morphology of sea ice.

Texture is normally considered to be a local property within an image.

One definition of texture is the "apparent minute pattern of dettl in a given

area" (Hsu, 1979). The words "minute" and "detail" in this definition imply a

local character to image texture. In other words, texture at a given location in

an image can be measured by examining a small area immediately surrounding

0 the point in question. Following this logic, most texture analysis algorithms are

based on small, local (neighborhood) calculations. There are, however, a class of

textures where the spatial scales of the texture are large with respect to sampling

0 interval, or pixel size within the image. Textures are also found which require cal-

culation of texture statistics over large areas of the image in order to accomplish

reliable discrimination of texture types. The ice imagery analyzed here is repre-

sentative of this class of textures that cannot be adequately discriminated using

small neighborhood (e.g., 3 x 3 pixel) operators. However, if the neighborhood

size is increased to achieve more reliable estimates of low-frequency or spatially

variable textures, then the probability increases that the neighborhood will en-



FIGURE 1-1. Typical 33.6 GHz image of Arctic sea ice.
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* compass more than a single texture type, thereby confounding the calculated

values of texture parameters. The new paridigm for texture analysis introduced

here is termed a global, as opposed to a local, analysis. Since large areas are re-

* quired to obtain stable statistics for the class of textures under consideration, the

neighborhood is simply expanded to include the entire image. Texture measures

calculated from the entire image are then linearly unmixed to infer the textural

* composition of the image, which necessarily leads to the observed global texture

measure values. Under the global approach, one does not know where in the

image a particular type of texture occurs. In essence then, the global approach

is a means of trading positional certainty for more accurate overall estimates

of composition. In many applications accurate image composition information

is more irIportant than precise positional information, so that this trade-off is

* advantageous.

The following paragraphs present an overview of this dissertation.

Section II describes the scanning system that generated the sea-ice im-

agery used as test data for texture analysis. The geometric and radiometric

characteristics of that sensor that would impact texture in the recorded imagery

are especially highlighted in that section. Analysis procedures required to avoid

scanner artifacts in the texture data are established.

Section III reviews image texture analysis, contrasts the local and global

• approaches, and introduces the concept of a "feature space" (a common term

in pattern recognition). Six mathematical properties of texture measures, which

are be desirable in this study, are described and 25 candidate texture measures

• are defined. The desired characteristics serve as the yardstick for evaluating the

candidate texture measures.
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Section IV presents the first image data set. This data set consists of 64-

x 64-pixel image fragments containing only a single ice type, which has been

determined by prior expert interpretation of the images. Values of the candidate

texture measures are calculated for this image set, and the resulting numerical

values are analyzed to determine to what degree the candidate texture measures

match the desired characteristics established in the previous section. elf the 25

candidate texture variables evaluated, only 12 are shown to be suitable for use in

global texture ,nalysis, and then only if the mean brightness values are identical

for each texture class. For textures with varying means, only six texture variables

are found to be useful.

The unmixing of globally calculated texture data to infer textural compo-
sition of the image utilizes th CABFAC and QMODEL coiputer codes, which

require that the data matrix have constant row sums. Image texture data are

not intrinsically constant-sum. Section V addresses this problem. A data matrix

transformation, which will put the data into a constant-sum form in a ±nan-

ner that reduces the informaiion loss occurring as a result of the constant-sum

formation process, is defined.

Section VI introduces the lnear unmiring procedure that is used to infPr

image composition from global data. The mathematical model for linear unmix-

ing is described and the appropriateness of that model is evaluated using tcxturc

measures calculated for the 64- x 64-pixel, pure ice-type samples from Section

IV. Once the validity of the linear unmixing rmdel has been established, the pure

samples are "unmixed," even though they are not mixtures. The compositions

of these image samples should be 100% for the ice class to which they belong and

0% for all other ice classes. Comparison of the actual compositions calculated by

unmixing with these known compositions provides the first quantitative estimate
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of the ice-type discrimination power of global texture analysis.

Section VII presents the first analysis of images that contain more than

one ice-type. The mixture images analyzed here are synthetic mixtures created

by mosaicking the single ice-type images in various proportions. The unmixing

process is conducted for this synthetic data set. Various techniques arc applied to

select end members for unmixing. The end-member selection techniques aze de-

scribed and compared. Accuracies are calculated for image proportions resulting

from the various techniques.

Section VIII looks toward natural mixtures by using the synthetic mixture

data set to investigate questions pertinent to natural mixtures. These questions

arise because natural textures have shifts in rmean image intensity levels for each

texture class. This shift in means was artificially removed from the synthetic

mixturea analyzed in Section VII. Because of this mean shift, only six texture

measures are suitable for natural mixture images. The synthetic mixtures are

recreated, this time without adjusting the mean intensity to a uniform value. The

analysis shows that the reduced number of texture variables and the differences

in mean levels between texture classes do not significantly degrade unmixing

accuracy.

Section IX contains the analysis of full frame images containing natural

mixtures of ice types. The analysis of natural mixtures in the present study is

limited because of lack of appropriate images in the data set. What work is done

here with natural, full-frame mixture images indicates that root-mean-square

(rms) ice-type proportion errors on the order of 0.05 may be possible for simple,

natural mixtures.

The conclusions of this study are stated in Section X. Recommendations



are presented for further study to advance the global texture analysis approach.

Recommendations are also presented for future ice work using the global tech-

nique. The extension of this approach to synthetic aperture radar (SAR) images

of sea ice is seen as especially significant.

a
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II. K-BAND RADIOMETRIC MAPPING SYSTEM

The K4-band Radiometric Mapping System (KRMS) is an airborne micro-

wave irmager that operates at a center frequency of 33.6 GHz. Important char-

acteristics of the instrument are given in Table 11-1. Those characteristics that

pertain to texture analysis of imagery collected by the KRMS are discussed in

this section.

A. SPATIAL SAMPLING

0 The 10 antenna beamwidth results in a nadir instantaneous field of view

(IFOV) oi 16 ft per 1000 ft of flight altitude. Postacquisition signal processing is

applied to the data to achieve a cross-track IFOV of 12 ft per 1000 ft of altitude
in the digital imagery (Eppe r cc al., 1984). All imagery analyzed in the present

0 ~~ ime ihe thgt iprgryse--t

study was acquired from an aircraft altitude of 5000 ft; the result was a 60-ft

cross-track by 80-ft along-track IFOV in the digital data.

* The active scan angle of the KRMS is 1000 centered on nadir. The resul-

tant cross-track ground coverage is equal to 2.38 times the altitude, or 11,900 ft

(approximately 2 nrni) for a 5000-ft altitude. If aircraft altitude is low enough

*0 that curvature of the earth can be ignored, then scan geometry for an airborne

scanner is shown in Figure I-1, where 6 is the scan angle relative to nadir, h is

the aircraft altitude, P is the ground point being sensed, x is the ground distance

* from nadir to P, and d is the distance from the sensor to P. Trigonometry leads

to an expression for x as a function of 0 and h.

* x =htanO. (I-)

If KRMS data were digitized using a constant time interval between sam-

* 7



TABLE Il-1. KRMS TECHNICAL CHARACTERISTICS
taken from Eppler et al. (1984)

AN TENNAS
number 3
diameter 24 inches
polarization vertical
beamwidth 1.00
isolation 40 dB (minimum)

SCANNER
maximum scan rate 25 scans/second
minimum scan rate 7.5 scans/second
scan angle 600 from nadir
active scan angle 500 from nadii
antenna position accuracy 2.5 minutes if arc

STABILIZATION
method cross-track roll gyro
accuracy less than 0.250

RF AMPLIFIER
type superheterodyne (DSB)
noise less than 5.0 dB
bandwidth 1.3 GHz
gain greater than 60 dB
loss 1.2 dB (maximum)

RADIOMETER
type pulse stabilized, total power
pulse width 4.0 ms
local oscillator frequency 3-3.6 GHz
IF bandwidth greater than 500 MHz

video bandwidth 1.7 kHz (maximum)
video gain 72 dB (nominal)
minimum detectable signal 0.05 K/second
sensitivity 50 mV/K (nominal)

dynamic range 370 K

8
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* FIGURE 11-1. KRMS scanning geomnetry.

FIGURE 11-2. Coip arison of the relative size and shape of the KRMS
IPOVat nadir (left) and at the scan edge (right).



ples (which is equivalent to a constant angular interval), the sample interval in

terms of ground distance would not be uniform across the scan line, but would

vary as %. Differentiating Eq. (II-1) with respect to 0 yields

dd
-= hsec2 0. (11-2)

do

Substituting 0 values of 0 and 50' into Eq. (11-2) shows that the value of

varies by a factor of 2.42 from nadir to the end of the scan line. This amount

of variability in sample spacing on the ground would certainly be intolerable in

texture analysis where spatial relationships of image intensity are crucial. For-

tunately, the analog-to-digital (A/D) conversion software for the KRMS system

incorporates a nonuniform sampling in time, appropriately chosen to result in

uniisrrnt namnpiifg in grond d~stn-e

However, another potential texture analysis problem associated with scan-

ner geometry results from the fact that IFOV is a function of 0. At the edge of

the scan the IFOV represents an integration over a much larger ground area than

the IFOV at nadir. Both d and 0 combine to enlarge the cross-track dimension

of the IFOV in proportion to d. The along-track dimension of the IFOV is in-

creased in proportion to d which is proportional to Figure 11-2 compares

the KRMS IFOV at nadir and at the ed_ -f the scan. Clearly one would expect

significant loss of high-frequency content n dhe image toward the edge of the

scan. The typical KRMS image shown in Figure I-1 exhibits this effect in the

form of a fuzzy or defocused appearance at the image edges.

Each KRMS scan line ib digitized into 512 samples. Assuming a 5000-ft

aircraft altitude where the cross-track coverage wotdd be 11,900 ft, the sampling

interval in terms of ground distance between each of the 512 samples in a scan
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line would be 23.3 ft. Comparison of this intersample spacing with the IFOV of

60 ft at nadir shows the data to be oversampled by a factor of 2.58 at nadir. The

cross-track oversampling factor becomes even larger toward the ends of the scan

* line where thi, IFOV increases.

The along-track sampling interval is determined by a combination of air-

craft altitude, aircraft ground speed, and antenna rotation rate, all of which can

be adjusted in flight by the KRMS operator. Nominal values for these three

parameters during the acquisition of the KRMS data analyzed here are 5000-ft

altitude, 221-kt ground speed, and 50 ins per scan. Resultant scan line sepa-

ration on the ground is 18.5 ft. This separation, when compared to the 80-ft

along-track IFOV, indicates an oversampling factor of 4.32 in the along-track

direction.

The aspect r.tio in the KRMS imagery is not unity. Along-track and

cross-track sampling intervals of 18.5 ft and 23.3 ft, respectively, result in an

* aspect ratio of 1.26, elongated in the along-track direction. One could attempt

to correct the images for aspect ratio, but such a correction would be subject

to uncertainties. Aircraft altitude and speed recorded on the flight log are only

* estimates that can vary from the true values. Because of these and other uncer..

tainies (such as aircraft crab angle) in platform attitude and motion, no aspect

ratio correction to the imagery has been attempted.

0

B. CALIBRATION

The KRMS data is digitized to 12-bit precision resulting in possible dig-

ital values ranging for 0 to 4095. The data have been calibrated by methods

described in Eppler et al. (1984) so that the equation

11
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Tb = (-0.0276 * digital value) ± 248 (1I - 3)

can be used to convert digital image values to brightness temperature, Tb, in

Kelvins (K). In the present study it was convenient to work with 8-bit data,

which can assume values ranging from 0 to 255. The 12-bit data were converted

to 8 bits by dropping the four least-significant bits. The calibration equation for

the resulting 8-bit data is

Tb = (-0.4416 * digital value) + 248. (II - 4)

The range represented by the 8 bits is unchanged from 12-.bit data (135 to 248

K), but the sensitivity in the S-bit data is ureduced to 0v.4416. K/digital v lue

rather than the 0.0276 K/digital value present in the original digital imagery.

The reduced sensitivity of the 8-bit data is more than adequate for the tex-

ture analysis performed here, since the rms noise level in the KRMS data is

approximately 2.5 K. The four least-significant bits that were dropped therefore

represent temperature sensitivity that is well below the random noise floor in

the data. Note that Eq. (11-4) describes the case where darker shades in the

imagery represent higher radiometric temperatures and lighter shades represent

lower tcmperatures.

C. ANTENNA BALANCE

The KRMS scanning system consists of three parabolic antennas mounted

1200 apart on a single rotating shaft. Thus, one revolution of the shaft produces

three scan lines, one from each of the antennas. Only the downward-looking

antenna is active at any given time. The A/D conversion software for the KRMS

12



data contains provisions to compensate for differences in the response charac-

teristics of the three antennas. This compensation is adequate to insure that

scan-line banding is not readily apparent in the images. However, the compen-

sation is not perfect and some sensitive texture measures may be affected by the

imbalances within the scan-line triplets.

D. EFFECT OF OBSERVATION ANGLE ON BRIGHTNESS

TEMPERATURE

The underlying assumption in this study is that changes in the physical

characteristics of the ice pack (e.g., salinity, liquid water content, ice thickness,

deformation, etc.) will produce textured distributions of brightness tempera-

tures, Tb, that can be measured from microwave imagery and utilized to identify

specific ice types. However, superimposed upon these textured Tb distributions

that result from the physical characteristics of the ice, one finds a T distribution

resulting from the effect of observation angle. These angular effects can confound

our attempts to produce accurate measures of that component of image texture

related to ice type.

Eppler et al. (1984), and references cited therein, discuss the problem of

observation angle effects on microwave brightness temperatures of sea ice. The

problem can be summarized in simple terms by considering a model treating

the ice as a semi-infinite dielectric slab. Te dielectric is assumed to be lossy,

resulting in a complex dielectric constant, c. If we consider only vertically polar-

ized emissions from the surface (the KRMS senses only the vertically polarized

component), the vertical Fresnel coefficient P4(0) for an electromagnetic wave

emerging from the dielectric is:

13



(f cos G - s)

(ecosO + S)'

where

S = 4 -sin0.

In the microwave portion of the spectrum, the intensity of the radiation emitted

by a "gray" body is frequency dependent and is proportional to physical temper-

ature To. Since the intensity is proportional to the square of the field strength,

we have outside the dielectric (Stogryn, 1970):

Tb(1) -- I(O)itT, k + (1 - IP(0)12)TO. (II -6)

-Taky is the rMdiurnjettic temper aure of the .ky, whih i- the mnicrowave portion

of the spectrum is typically less than 30 K. If we assume that T1,h is 15 K, E

for ice is (3.15, 0.011) (Stogryn, 1981) and To is 270 K, then the simple lresnel

model of Eq. (11-6) results in the Tb(O) curve shown in Figure 11-3. Note that the

model predicts an increase in brightness temperature with increasing scan angle.

The elevation in Tb relative to the nadir value reaches a maximum of 20 K at an

observation angle of approximately 610. At 300 the model predicts an increase

in Tb of approximately 6.4 K. The magnitude of this temperature elevation with

angle will vary with ice type because the salinity and, therefore, the complex

dielectric constant, varies with the age of the ice.

The KRMS imagery from March 1983 contains a large area of shore-

fast, first-year ice that can be assumed to be isothermal. Eppler et al. (1984)

calculated average Tb as a frnction of scan angle for this isothermal ice field.

Figure 11-3 shows those results along with the theoretical curve from Eq. (II-

6). Close agreement exists between theory and observations because the chosen

14
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value for c was apparently appropriate for this first-year ice. The conclusion

is that 7) distributions will be a linear combination of texture related to ice

type and some limb-warming trend, which is also related to ice type through th.

complex dielectric constant in Eq. (11-6). The procedure to subtract the limb

trend from the KRMS imagery is not straightforward, since the magnitude of the

trend is different for different ice types. Therefore, correction for this ramp has

not been included in the present study. This correction is suggested as a possible

enhancement to future work. Eppler (1987) is studying this problem.

E. KRMS SUMMARY

Characteristics of the KRMS have been discussed here to be certain that

the analysis is undertaken with full recognition of any scanner-related factors

that could have significant impact on the textures of the images recorded by this

instrument. To summarize the factors discussed, the following potential problems

and possible solutions are listed.

o The aspect ratio of the images is 1.26, elongated in the along-track direction.

No correction for aspect ratio has been performed. The problem will be

ignored, but textures will not be isotropic.

* Data are oversampled by a factor that ranges from 2.58 to 6.24, depending on

dircction within the image and distance from the image edge. This problem

will be reduced by eliminating the 100 edge pixels on either side of the

image (where the oversampling is most severe) from inclusion in the study.

Excluding these edge pixels reduces the range of the oversampling factor to

2.58 to 4.32. It is noted that this oversampling will result in an absence of

high-frequency content in the imagery. Texture measures associated with

high frequencies are expected to be of no value.
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* Each group of three successive scan lines is sensed through a different an-

tenna. Imbalance in the antenna response characteristics may lead t9 a

periodic (f = 0.33/pixel) texture artifact in the along-track direction. Tex-

ture measures will be implemented in such a way that the effects of this

artifact are minimized.

* The images analyzed here are calibrated in terms of microwave brightness

temperature. Calibration is an advantage for texture analysis because we

can ignore image normalization by histogram equalization or by other means

which are normally required prior to texture analysis (Haralick et al., 1973).

* Brightness temperatures increase toward the edge of the scan line because

of the effects of incidence angle. Issues of resolution have led us to discount

the 100 edge pixeis on either side oi he iagery. Th0 ,,i-i ... o of t,Lca_ r11 01 Mer 1114g+y LI-L U1111ttM~

edge pixels also ninirmizes the im.b warming problem. By ignoring the 100

edge pixels, the remaining image area is observed at an angle of 300 or

less where the limb warming is less severe than at the ends of the scan

line. It is assumed that this cross-track brightness trend can be ignored in

the subsequent texture analysis. This assumption would certainly be valid

for texture analysis based on the local neighborhood. However, under the

global approach to texture analysis outlined in Section III, the expected

cros.s-track trend will undoubtedly have some effect.
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III. IMAGE TEXTURE ANALYSIS

Texture is an important factor in the analysis of many types of images.

Despite its importance in image data analysis, a precise mathematical definition

of texture does not exist. Texture has been defined subjectively as the "local

spatial distribution of tonal values within an image" (Haralick et al., 1973), or

the "apparent minute pattern of detail of a given area," (Hsu, 1979). Because

of the lack of a mathematical definition of texture, it is difficult to pursue a

rigorous, formal approach to texture analysis. Texture discrimination techniques

have therefore been described as being, for the most part, ad hoc (Haralick, 1979).

However, two broad classes of textures are generally xecognized. These texture

dasses are called structured and statistical.

Structured textures are characterized by texture primitives and placement

rules. Figure 111-1 is an example of of a structured texture. Here the textire

primitive is the pattern TsX, and the placement rule is for a primitive to occur

at evenly spaced grid points. Structured textures abound - woven fabric, brick

walls, and wire mesh are typical examples. Structured textures are popular

subjects for study because the primitives and placement rules can be formalized

into grammatical models. Through a small number of rules and symbols the

grammar can generate complex textural patterns. The structural approach is

also attractive because it brings borne mathematical formalism to bear on the

texture discrirrination problem where none exists naturally. For an overview of

the application of grammatical models to structured texture analysis, see Ballard

and Brown (1982).
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placmen rul X

Figure 111-1. A simple structured texture constructed u-sing 7 rX as .
the texture primitive and a rectangular grid as the
pacement rule.--

Textures that cannot be adequately described by primitives and place-

ment rules fall into the statistical class where texture is described by statistical

rules governing the spatial distribution and relation of tonal values. In the field of

remote sensing nearly all natural textures observed in aerial images of the earth

fall into the statistical category. A sample of the KRMS imagery studied in this

investigation wa- shown in Figure I-1. Recall the lack of any structure to the

texture contained in the image. Analysis of these data will, therefore, follow a

statistical approach. Specifically, statistical pattern recognition is the paradigm

that will be used to explore sea ice textures. There are other statistical methods

of dealing with texture (Pratt et al. 1981), but this study will be confined to the

statistical pattern recognition approach, which seems to be particularly appro-

priatc. fin low-resolution textures such as those seen in aerial images (Weszka et

al., 1976).

The basic notion of pattern recognition is the "feature vector." A set of

m image measurements, zi, is considered to be a feature vector, X,

X = 017X)0 --On

in a "feature space" of ?n dimensions. For texture analysis the image inea-

surements should, of course, be measures of texture type so that feature vectors
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duster according to the texture from which they were derived. Figure 111-2 shows

examples of effective and ineffective feature selection. If features can be found

such that the feature vectors duster by texture type in feature space, then the

methods of statistical pattern recognition can be brought to bear on the image

texture analysis problem.

A. LOCAL AND GLOBAL APPROACHES TO IMAGE TEXTURE

Because texture is usually considered to be the local distribution of tonal

values, most image texture studies take a local approach to texture analysis.

Under the local approach, one determines the texture dass of a given pixel by

examining the pixels in % neighborhood surrounding the pixel in question. If

one wanted to know the percentage of an image consisting of some texture type,

each pixel in the image would be dassified based on its neighborhood and then

the number of pixels classified as belonging to a given dass would be summed.

Examples of the local approach are abundant in the literature. For example,

Hsu (1979) used both 3 x 3 aid 5 x 5 pixel neighborhoods for texture-based

dasaification of terrain types in aerial imagery. Holmes et al. (1984) have las-

sified SAR imagery of sea ice using r- circular neighborhood with a 5 pixel (15

m) radius. Fily and Rothrock (1986) used a 15 x 15 pixel neighborhood to dis-

crirrinate between ice and open water in SAR imagery. Laws (1.980) segmented

images based on texture by convolution with small masks ranging from 3 x 3 to

7 x 7 pixels.

The local approach is not optimal for the sea ice texture analysis at hand.

Consider the image examples shown in Figure 111-3. Each ice type clearly has

a different textural appearance. However, if one extracted a 3 x 3 or 5 x 5

pixel neighborhood from the second-year or multiyear ice images, then it would
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FIGURE 111-3. Representative samples of KRMS imagery of first-
year, seco nd-year, and multiyear fee.
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obviously not be possible to say with certainty from which image the small image

fragment was taken. The difference between second-year and multiyear ice types

in Figure 111-3 is not some unique neighborhood signat.re but, rather, the average

nunber of texture features per unit area over the entire sample. Therefore,

one would expect ice-type classification accuracy to improve as the size of the

neighborhood increased because the larger neighborhood gives a better statistical

sampling of the texture per umit area. If larger neighborhoods provide more

accurate texture features, then why not make neighborhoods extremely large?

The limiting factor is that as neighborhoods increase in size, the neighborhoods

D o longer contain a single ice type and classifications become inaccurate because

of ice-type mixtures. Thus, one is faced with the conflicting requirements for

large neighborhoods for sroved statistics aund small neighborhoods to insure

single ice types within the neighborhood.

Other investigators have discussed these conflicting requirements for neigh-

borhood size. Conners et al. (1984) encountered this problem in the texture-

* based segmentation of aerial photography of urban areas. They found in their

case that an intermediate-sized neighborhood of 145 x 145 pixels was a good

compromise. Weszka et al. (1976) found a 64 x 64 pixel neighborhood size

*1 worked well for the classification of terrain types in Landsat Multispectral Scan-

ner imagery. Another solution to this conflict can be found in linear unmixing

theory combined with a global approach to image texture analysis. Under the

glolal approach the neighborhood is expanded to include the entire image, thus

yielding the best possible estimate of image texture statistics. Linear unmixing

theory is then applied to the global estimates of image texture measures to deter-

* rine the proportions of the various ice types that must be present in the image

in order to yield the observed global image texture feature statistics.

23



In summary, then, the local approach is to determine texture class for each

pixel based on its neighborhood, and then to count the pixels in each category

to determine the percentage of the image covered by a certain texture type. By

contrast, under the global approach, one calculates texture measures based on

the entire image, then applies linear unmixing calculations to the global texture

statistics to find texture proportions in the image. In both cases the desired

result is the same; i.e., proportions of the image covered by each of several

texture classes, but the approach to achieve the result is different for the local

and global cases. This work follows the global approach.

B. DESIRABLE PROPERTIES OF TEXTURE MEASURES

Figure 111-2 showed how effective features should duster in feature space

according to ice type. However, the selection of effective features is more involved

than a simple clustering analysis. It is instructive to consider in more depth the

question, "what texture measures will be effective features"? What properties

are desirable for texture measures? How important are these properties? What

are the consequences to the proposed texture analysis if these properties are not

realized? How will the presence or absence of these properties be quantitatively

measured? Answers to these and related questions form the substance of this

section. The properties of texture measures that will contribute to the formation

of an effective feature space are enumerated. Each is discussed with the above

questions in mind.

1. Correlation with Ice Type

Obviously for a texture measure to be useful in the present application,

it must be correlated to some degree with the ice type imaged by the KRMS
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* scanner. This property has some significant implications. If the texture meas-

ures selected for this study are all at least moderately correlated with ice type,

then the texture measures will, as a consequence, be correlated to a significant

* degree with .&ch other. This expected correlation between variables means that

the true dimensionality of the multivariate data set will be considerably less

than the number of texture measures, or features, defining the feature space.

0 A dimensionality reduction procedure, such as principal components analysis or

factor analysis, is therefore indicated as a logical inclu;ion in the analysis.

How is correlation with ice type to be quantitatively judged? In this work

0 correlation of candidate texture measures with ice type will be determined by

performing a classification of fifty 64 x 64 pixel samples of pure ice types into

first-year, second-year, and muitiyear classes based on the texture measure in

0 question. (These 50 samples, called data set A, are discussed in Section LV.)

The classification algorithm employed will be the maximum Bayesian classifier

(Duda and Hart, 1973), which is discussed in Appendix A. The end result of this

0 classification is a confusion matrix from which an overall classification accuracy

can be calculated (see Appendix A).

0 2. Multivariate Norrnidity

Although the linear unmixing algorithms (Sect. VI) do not explicitly

require niultivariate normality, it is decirable that this property exist in the

texture feature space because several ancillary procedures associated with the

study do require normality. For example, the Bayesian classifier, just mentioned

in comnection with the determnnation of correlation of texture measures with ice

type, is bast-d on the assumption of normality. Therefore, the candidate texture

measuies will be examined for normality. Once normality is established, we can

25



proceed into various statistical analyses as deemed necessary in the course of the

study without being hindered by concerns about normality.

Since texture analysis using the feature space paradigm from statistical

pattern recognition is a multivariate problem, the multivariate normality of the

data set is the property actually desired. However, the construction of "good"

overall tests for joint normality of multivatiate data sets has proven to be difficult

for the statistical community (Johnson and Wichern, 1982). Therefore, practi-

cality dictates that for the present data set, examination of normality must be

limited to the udaivariate distributions of the individual texture measures. The

drawback of exomining univariate distributions only is that we can never be cer-

tain that we have not missed some nonnormal feature that is only revealed in

higher dimensions. The chances of this happening are apparently small, since

Johnson and Wichern (1982) state the following.

Fortunately, pathological data sets that are normal in lower dimen-
sional representations but nonnormal in higher dimensions have not
frequently been detected.

As a simple means of examining univariate normality, one could create

a histogram of the values of the texture measure in question and examine the

histogram subjectively for symmetry and for a general "bell- shaped" appearance.

To be quantitative, skew and kurtosis could be calculated to give numerical

values to histogram symmetry and "peakedness," respectively. However, more

sophisticated tests are also available. For example, a common technique for

assessing univariate normality is the Q-Q plot, which is a plot of the sample

quantile versus the quantile one would expect to observe if the observations

actually were normally distributed. Appendix B discusses the calculation of Q-

Q plots and gives an example. For a normal distribution the Q-Q plot will be

linear. Departures from linear are therefore a measure of the nonnormality of a
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data set. The linear correlation coefficient of the Q-Q points will be used here

as the criterion of normality.

Several of the texture measures under consideration will be shown to be

normal by the linear Q-Q plot test in Section IV. However, a mathematical trans-

formation of variables will be used in these cases to bring the data sufficiently

close to constant normality. Precise normality is not a critical factor for this

study.

3. Linear Mixing

The approach to texture analysis set forth here requires that image com-

positions be determined by linear uninixing of global estimates of texture vari-

ables. For this approach to be useful, the texture measures selected must mix in

a known manner, which for the present study we require to be linear. By mixing

linearly we mean that if texture measure z has a value xV ) for a pure sample

from Class I and a value of x, for a pure sample from Class I, then the value

of xi for a half-and-half mixture of Classes I and II, z~t ±II), would be
(I) (II)(H -)

Xi 2

'1, assess the mixing performance of candidate texture measures, we will

take typical first-year and multiyear ice-image samples and miosaick them to

form a mixture image containing equal proportions of first-year and multiyear

ice. Values of the texture measure in question will be calculated for the individ-

ual first-year and mutiyear samples, as well as for the combined mixture image.

Based on tile values of a given texture measure calculated from the mosaicked

first-year plus indtiyear image, the fraction of the combined image occupied by

multiyear ice will be linearly predicted. For a texture variable to be consid-

ered to mix linearly, the proportion of the image linearly predicted (Eq. III-1))
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to contain multiyear ice must fall between 0.4 and 0.6. (The true value is, of

course, 0.5.) Tie ± 0.1 error tolerence is allowed to account for imprecision in

texture measure calculations that result from edge effects or other factors that

are different between single images and a mosaicked mixture. (Edge effects are

discussed further in Section IV.)

The linear ixing property for texture measures is absolutely essential in

the present study because the global approach to texture analysis depends on

the ability to unmix globally derived texture data. As the study proceeded, the

linear mixing requirement proved to be a major roadblock. Section IV will show

that only 6 of the 25 texture variables considered behaved linearly in mixtures.

Thus, dealing with nonlbne-: U UL, P'Chavior became one of the major study

areas in - " .

'',. CAPFAC an " 7 - ;J (see for example, Imbrie and Van

J. 4-, )4;A iaa er. f . ,ll et al., 1981; Full et al., 1982),

W "hich u'a , Vwj- , .'4.Ut<- t 1toplerrtentations of the mathematics of linear

l tg,-, r.. o',krc that te deA k. "constait sum." The term, constant sum,

Z.' Xm), have components, xi, such

It. ., . constr.t. S,-rue cdt - '. .-i. .- aiiy constant sum. For example,

. peoly.t. r~c I~ crnposi ,it, Tt 2L t,-n L% for every sample. However,

,. ;,... vector bore hav: ax.p. ' consist of various image texture

f~5g: v:', s-.' tGt;f, *io not, nccc:. oy utY, q. (111-.2), If texture measures

7'!:'[' d , ] i,] th,,.t nat iii ii ,f,:tctA€. ,t.,t.t .t uni vectors, then it would be
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an advantage to the unmixing analysis employed here. Such natural constant

sum texture variables are not out of the question. For example, if one would

calculate the energy spectrum of an image and then use the percent of total

energy contained in spectral "bins" as texture measures, the result would be

constant sum feature vectors, since the sum of the energy in all bins would be

100% for every sample.

Although some texture measures, such as the energy binning just pro-

posed, may be naturally constant sum, the majority of the texture measures

commonly used are not. If the constant sum requirement could be circumvented,

then this study would not need to be limited to the small subset of texture meas-

ures that provide natural constant sums. One could, of course, scale data vectors

so that the sum of the components is forced to the desired sum. However, in

doing so the ice-type information in the data set may be lost. Thus, a careful

look at the constant sum problem is required. Section V contains an in-depth

treatment of this topic.

5. Invariancc Under Linear Transformation

A desirable but nonessential characteristic of image texture measures is

that they be invariant under linear transformations of the image intensity values.

This property is desirable because it would result in texture analysis algorithms

that are independent of sensor calibration or scene illumination. Without invari-

ance to linear transformations of image intensities, the form of texture algorithms

may be universal from one data set to another, but the numeric values of the

coefficients or parameters will change for every data set. In that case, one is

faced with the requirement to "train" the texture analysis algorithms on every

data set, or possibly even "retrain" during a single experiment to compensate
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for drift in sensor calibration. Environmental factors such as atmospheric haze

can also introduce linear gain and offset factors into recorded image intensities,

requiring "retraining" to compensate for environmental variability. Obviously,

the invariance characteristic is highly desirable in general, butN texture analysis

can still be effectively performed in its absence. A few of the texture measures

examined in this study will be shown to be invariant; the majority are not.

The invariance of some of the texture measures could be proven analyti..

cally. hi other cases the proof must be empirical by means of calculations from

actual images before and after a linear transformation is performed. Since some

texture measures require examination by empirical means, the analytical proofs

have been ignored and all candidate texture measures have been evaluated for

invariance based on catculationsB frou, a tret image. The irvarivance tet 'was Con-

ducted using a multiyear sample from data set A (see Section IV). Let 1s,l)

represent the intensity of a test image pixel taken from a location indicated by

sample number s and line number i. A new, linearly transformed test image with

intensity values 1'(s,l), formed from I(s,i) according to

P(s,1) : aI,) + b, (111-3)

where a is the gain aid Is is the offset values of a linear transformation. For

the test of invariance applied to data set A in Section IVW, the values a = 0.8

and b = -20 were used. The texture measure in question was calculated for

the original image and also for the transformed inege. If the two -values agreed

within the limits of precision on the calculation, then the texture measure is

labeled as invariant.

So few of the texture measures examined were invariant that the nonin-

variant measures could no't be elitinated from consideration in this study. The
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information on invariance of candidate texture measures is therefore included in

Section IV only as useful information to the reader who may be considering these

texture measures in some other context than the present study.

Since all data analyzed here were obtained during a single flight and since

the KRMS has proven to be very stable in calibration over the duration of a

flight (Eppler, 1987), the invariance properties of texture measures are not of

concern here. Such techniques as histogram equalization, which are commonly

applied to remove calibration or illumination variability prior to texture analysis

(Haralick et al., 1973), were not applied to this data set. The reader is cautioned

that numerical results from this experiment can not be transferred directly to

other data sets.

6. Computational Simplicity

Computational simplicity is always a desirable property for texture meas-

ures. hi aplications of texture analysis to large data sets or in real-time applica-

tions, computational simplicity may emerge as the most desirable of all proper-

ties. However, in the present research work with small data sets, computational

simplicity is of no consequence. This factor is therefore ignored.

C. CANDIDATE TEXTURE MEASURES

Twenty-five texture measures were considered for inclusion in this study.

These measures fell into the following general classes.

e first-order statistics

* measures derived from the gray level co-occurrence matrix (second-order

statistics)
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* Laws' masks (energy spectrum partitioning)

* gradient analysis

* run length

Representative image texture measures were selected from each of these

five groups for a total of 25 texture measures to serve as candidates for inclusion

in this ice classification study. This section will describe the candidate texture

measures.

The candidate texture measures examined here were selected because they

appeared to be the measures most frequently appearing in the literature or be-

cause they seemed especially appropriate for sea ice textures. However, numerous

texture measures not considered in the present study have also been reported in

the literature. Some examples are given below of work on texture measures that

have been reported in the literature but not included here.

Texture signatures have been generated using gray-level generalizations

of binary "shrink" and "expand" operators (Werman and Peleg, 1985). Har-

wood et al. (1985) studied rank correlation between a standard "rank mask"

and a "ranked local neighborhood." This method is similar to convolution with

Laws masks, except that the mask and the local neighborhood are converted

to ranked form. Ranking is caimed to result in a rrre robust texture analysis

because local order statistics are unaffected by local sample differences due to

monotonic shifts of texture gray values and are less sensitive to noise. Peet and

Sahota (1.985) have drawn upon classical differential geometry by considering tile

intensity values of an image to form a three-dimensional surface. Measures of

local surface curvature, such as the Gaussian curvature or the mean curvature,

are applied to texture discrimination. Davis et al. (1979) analyze texture by
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replacing the texture with another image that indicates the positions of certain

local texture properties, e.g., of edges in the original image. Local maxima are

then located in the transformed image and a generalized co-occurrence matrix

is defined that will capture the important spatial properties of these local max-

ima. Davis et al. (1979) concluded that generalized co-occurrence matrices are

useful in distinguishing macro textures that are not satisfactorily distinguishable

using features derived from conventional co-occurrence matrices. These exam-

ples, and many other texture measures not mentioned here, may be useful for ice

classification, but it was necessary in this first work on unmixing global texture

measurements to limit the candidate texture measures to a manageable number.

The 25 texture measures considered are believed to be representative, but they

are not necessarily an optimal selection.

1. First-O, der Statistics

The first-order statistical quantities, mean, variance, skew, and kurtosis,

will be considered as possible texture measures. These distributional parameters

are not normally considered good texture measures because first-order statistics

are invariant to rearrangement of pixel locations. An image with given first-order

statistics can be scrambled randomly or by design into any possible spatial ar-

rangement of pixels and the values of the first-order statistics remain unchanged.

Since texture is "the local spatial distribution of tonal values within an image"

* (Ilaralick, 1979), texture measures that don't reflect differences in local spatial

distributions are novt strictly texture measures. Nevertheless, first-order statistics

are often used in texture analysis (e.g., Laws, 1980).

Holmes et al. (1984) and Lyden et al. (1984) specifically use first-order

statistics in connection with ice-type classification in syntletic aperture radar
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(SAR) imagery. Lyden et a!. (1984) observed that for X-band SAR with hor-

izontal polarization on both transmitter and receiver, the image statistics for

first-year ice may be distributed differenctly than for multiyear ice. Image in-

tensity values for first-year ice are approximated by a Rayleigh distribution, but

the multiyear ice backscatter is more nearly normal. This suggests that ice types

could be classified by means of their distributional characteristics. Distribution

differences observed in radar images (backscatter) do not necessarily appear in

KRMS images (ernissive). However, because of Kirchoff's Law, which relates

reflectance to absorptance, enough similarity between active and passive sea ice

imagery would be expected to justify including these first-order statistics in the

present study. The study will subsequently show that one of these first-order

statistics, mean intensity -value (or mean brightness temperature), is essential

to distinguishing second-year ice from a half-and-half mixture of first-year and

nmltiyear ice.

The mean, a, of a sample is given by (Dixon and Massey, 1983)

1 S L

P >EA(,,) , (111-4)
4=--1 L=1

where S and L are the total number of samples and lines in the image. If we

define pi to be the 0' central moment about the mean, /Ai is given by (Bury,

1975)

-1 (V,)--)t. (111-5)
4=1 1=1

Of course, the first central moment, /IA is always zero. For i = 2, t, reduces to

the well-known equation for sample variance (Dixon and Massey, 1983). Skew, a

measure of the symmetry of the distribution, and kurtosis, a measure of peaked-

ness of the distribution, are calculated from the third and fourth central moments
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as follows.

Skew (III - 6)
3/2

A4
kurtosis W2/4- (111- 7)

The mean, the variance, and the kurtosis always assume positive values for image

data, where I(s, 1) is always positive. Skew czan assume either positive or negative

values. To avoid dealing with negative numbers, skew values here have been offset

by d-3. Therefore, what we call skew is actually (skew + 3). Texture variables

derived from these first-order statistics will be called MEAN, VAR, SKEW, and

KURT from this point forward.

2. Gray Level Co-occurrence Matrix

The gray-level co-occurrence (GLC) matrix, P:j, is an array of second-

order probabilities. The t,3j element is the probability of finding a pixel with

gray level j at some given spatial offset, i, from a pixel with gray-level intensity

value i. A number of GLC matrices car. b! calculated for a given image. Each

possible value of gives rise to an individual GLC matrix. In digital imagery we

can express the displacement as a twa-componer't vector, where one component

in the samples (columns) direction has a magnitude of rnAs, and one component

in the lines (rows) direction h&6s a magnitude of nAl.

.5-(mns,nAl), (II - 8)

where 7n and n are i.tegers waid As and Al are the sampling intervals in the

samples and lines directions, respectively. It is therefore convenient to consider

the GLC matrix to be a four-dimen:dional array, F',j,r,,,n.

CLC matrices contain various types of texture-related information. For

example, the GLC matrix obviously contains edge information. If an image is
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unifon, the i &xid j intenity values at the ends of the displacement vector

will always be nearly equal, thus contributing to larger probabilities in the near-

diagonal elements of the GLO matrix. Conversely, displacement vectors spanning

edges link i,j values that are significantly different, thus increasing the values of

the probabilities in the off-diagonal elements of the GLO matrix. The ratio of

the values of the near-diagonal to off-diagonal elements of the matrix therefore

are a measure of "edginess."

The GLO matrix also contains first-order statistics. If the rows or columns

of the GLC matrix are summed, then the result is the histogram of the image

from which all of the first-order statistics discussed could be derived. Texture

measures derived from the GLC matrix are, therefore, redundant to some degree

with the first-order statistics

Shape information is also contained in the GLO matrix. To illustrate this

fact, consider the binary images of the letters T and L shown in Figure 111-4,

along with their corresponding GLC matrices for 6 = (-As, A). Note that these

two images have identical histograms (first-order statistics) and the same number

of edge points, yet the GLC matrices are different. This difference between GLC

matrices for the letters T and L is attributed by Trivedi and Harlow (1985) to the

fact that the GIC matrices contain at least some rudimentary shape information.
I

With first-order statistics, edge information, and shape information in-

fluencing the distribution of second-order probabilities within the GLO matrix,

the GLC matrix is obviously affected by the local distribution of gray shades

within an image, and therefore offers promise for texture analysis. Second-order

probabilities have a long history in association with texture analysis. Physiol-

ogists studying the human visual system suggested long ago that second-order
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gray level probabilities are what the human vision system is actually detecting

in visual perception of texture. Julesz (1962) stated what subsequently became

known as the Julesz Conjecture:

Second-order gray level probabilities could match at least the prim-
itive level of human texture perception.

Stating the Julesz Conjecture in more mathematical terms, we would say that

a necessary condition for two textures to be visually discriminable is that they

have different second-order probabilities.

The Julesz Conjecture stood for several years, but eventually papers ap-

peared presenting counterexamples to this conjecture. That is, textures were

synthesized that had identical second-order probabilities, yet were visually dis-

cernible. Some of the early counterexamples were not very convincing, since they

were barely discernible to the human visual system. However, unite distinct ex-

amples were eventually found. Figure 111-5 is an example of two visually distinct

textures that have identical second-order probabilities.

Gagalowicz (1979, 1981) salvaged the Julesz Conjecture by announcing a

revision. Harlow and Conners (1983) state this revision as follows:

A necessary condition for two textures to be discriminable is that
they have different local second order probabilities computed over
a small region of the image.

This revision, which specified local second-order probabilities, has served to main-

tain the idea that the GLC matrix contains sufficient information to allow dose

match with the human level of texture perception. Therefore, the texture meas-

ures derived from the GLC matrix appear to be the most widely used texture

measures. The GLC matrices themselves are very unwieldy. For 8-bit digital

imagery, where the number of possible gray levels, L, is 256, an individual GLC

matrix would be dimensioned 256 x 256. It would be difficult to find texture-
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related differences in the values of these 65,536 individual matrix elements. The

customary approach is, therefore, to work with "texture measures" derived from

the GLC matrix rather than with the matrix elements themselves. Haralick et

al. (1973) wrote the classical paper defining texture measures derived from the

GLC matrix. He called the GLC matrix the Gray Tone Spatial Dependence

Matrix. This paper defined 14 texture measures calculated by various weighted

combinations of the GLC matrix elements. Some of these texture measures have

found widespread use; others appear to have never been used after the original

paper. Other authom2, such as Conners (1979), have proposed additional texture

measures front the CLC matrix. The cluster prornii nce measure that follows is

one measure that came from Conners' (1979) work.

Six of the most widely accepted GLC matrix-based texture measures have

been included in this study and are listed below, along with their definitions.

L-1 L--1

i=0 i=0
cluser rtiac(m,n) = t- 1 _f Ai, )4

i=O i=O

L-1L -1

local homogeneity(m,n) 2 (I - A,,
i'- i=0 11-9L- 1 L- 1 (l -9

energy(m,n) = S ?.f,
i=0 i=0

L-I L-i

entropy(m,n) = E E P,,j,,,,,jn(P(i,j,m,n))
i=O i=0

correlation(m,n) > (- -n)j)P,,
i=0 -=O aiai
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where
L-I L-l

i=0 i=0

L-i L-i

i=O i=0

42 = ZA) Z P i,,m,n-L-1 L-1

i=O i=0
L-i L-I

2 = E' EV'i* )Pi~n
i=0 i=0

Naming of these texture features is not consistent between authors. For exampIc,

what we call inertia and local homogeneity, Haralick et al. (1973) called contrast

and inverse difference moment, respectively. The names used here are consistent

with more recent work, such as Ballard and Brown (1982) and Trivedi and Harlow

(1985).

In addition to the selection of these six texture measures, the displacement

vectors to be used for calculation of GLC matrices also must be considered.

For some texture measures, maximum ice-type discrimination occurs using large

displacement vectors; for other texture measures, small displacements give better

results. Figure 111-6 shows the inertia measure for three representative samples

of first-year (FY), second-year (SY), and multiyear (MY) ice as a function of

the length of 6(m,n). In this case maximum ice-type separation occurs for large

displacement lengths. Figure 111-7 shows the correlation measure as a function

of displacement vector length for the same three representative samples used for

Figure 111-6. In the case of the correlation measure the best separation of ice-

types results at small displacement vector lengths. To cover both of these cases,

we have utilized both short and long displacement vector lengths in this study.

Note in Figures HI-6 and 111-7 that several of the curves have a ripple
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FIGURE 111-6. The GLC matrix-based inertia texture measure as a
funotion of displacement vector length for three typical
128 x 128 pixel sai--ples of FY, SY, and MY ice.
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with a period of three pixels. The ripple is the result of imbalance between

the three antennas in the KRMS scanner. For displacement vectors with along-

track components, which are multiples of three, both ends of the displacement

vector cover pixels sensed by the same antenna. For along-track displacement

components, which are not multiples of three, the two pixels located at the

ends of the vector are sensed by different antennas, in which case the texture

information is corrupted by a contribution from antenna-to-antenna imbalance.

It is obviously better, then, to use only displacement vector lengths that are

multiples of three in the along-track direction. For this reason we have selected

displacement vector lengths of 3 and 1.5 pixels to serve as the short and long

displacement values, respectively. Each of the six GLC matrix-based texture

measures was calculated for both of these displacements. The result is a total of

12 texture measures based on GLC matrix calculations.

For a given displacement vector length two GLC matrices were calculated,

one with bin the samples direction and the other with Sin the lines direction. The

value of the texture measure utilized in subsequent texture analysis is the average

of these two values. For example the inertia texture measure for displacement

vector length, k is given by

inertia(k) = inertia(kAs, 0) + inertia(O, kAl) (HI - 10)
24

Although texture measures derived from the second-order probabilities

contained within the GLC matrix are widely used for texture analysis, the only

previous work known to the author where these texture measures were applied

to ice-type discrimination is that of Holmes et al. (1984). This previous study

involved the use of the entropy and inertia. measures to classify sea-ice types in

SAR imagery.
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The GLC matrix-based texture measures listed in Eq. ()I-9) will be

given the variable names INR3, PR3, IIOM3, ENG3, ENT3, ad COR3 when

calculated with a displacement vector length of three pixels. The names INRI5,

FR15, HOM15, ENG15, ENT15, and COR15 will be used when calzulations

utilize a 15-pixel displacement vector length.

3. Laws' Masks

Laws (1980) proposed a set of spatial domain convolution filters, the out-

put of which he used to classify an image texture data set with better accuracy

than could be achieved with GLC-based texture measures., The Laws method

will be shown as simply an image domain implementation of the old idea of

power spectrum partitioning. Laws' approach t(o energy partitioning will be fol-

lowed here for the calculation of image texture r easures related to the frequency

distribution of image energy.

If texture is the local distribution of intensity values within an image,

then differences of texture will clearly be reflected in the two-dimensional po~wer

spectrum of the image. To look at spectral distribution differences, some investi-

gators work with the power spectrum while others work with the autocorrelation

* function of the image. These approaches are equivalent, since the autocorrelation

function and the power spectrum form a Fourier transform pair according to the

well-known autocorrelation theorem (Bracewell, 1965).

Of those who work in the spatial-frequency domain, some search the

Fourier space directly for features in the power spectrum that can be related

to image texture For example, Bajscy and Lieberman (1974, 1976) determined

that blob-like tex:tures tend to have peaks in the power spectrum at radii com-

parable to the size of the blobs. A more common approach to spatial-frequency
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content analysis is to partition Fourier space into bins. Two kinds of bins, ra-

dial and angular, are often used. It is well known that the radial distribution of

values in the power spectrum is sensitive to texture coarseness. A coarse texture

will resuit in high values concentrated near the origin of the spectrum, but a fine

texture generates an energy spectrum that will be more spread out. Similarly,

it is well known that the angular distribution of values in the power spectrum is

sensitive to directionality of the texture. A texture with many edges or lines in a

given direction, 0 , will have high spectral energy values concentrated around the

direction 0 + (7r/2) from the origin of the spectrum. Thus, a good set of texture

measures reflecting coarseness and directionality could be expected from measur-

ing the energy content in a set of radial and/or angular bins within the Fourier

power spectrum of the image. Lendaris and Stanley (1969; 1970) used Fourier

spectrum partitioning to discriminate between natural and man-made scenes in

low-altitude photographs. Weszka et al. (1976) also apply Fourier power spectral

analysis to terrain classification.

In gereral, texture features bared on Fourier power spectra are consid-

ered to perform more poorly than features based on second-order, gray-level

co-occurrence statistics (Haralick, 1979). However, Laws (1980) reports that

his "texture energy" method performed better than GLC matrix-based texture

features on the Brodatz (1966) texture set he used. This study will show that

the texture energy measures generated by Laws' masks yield nearly equivalent

performance to the GLC texture measures here in the case of ice textures.

Laws (1980) proposed the three sets of one-dimensional convolution masks

shown in Figure 111-8. The logic leadin+g to the selection of these masks is not

obvious. These masks do have some interesting characteristics. Each mask is

weighted more heavily toward the center; all are either symmetric or antisymetric,
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THIRD-ORDER MASKS:

[1 2 1]

[-1 0 1]

[-1 2 -1]

FIFTH-ORDER MASKS:

[1 4 6 4 1]

[--1 -2 0 2 1]

[-1 0 2 0 -1]

[-1 2 0 -2 11

[1 -4 6 -4 1]

SEVENTH-ORDER MASKS:

[1 6 15 20 15 6 1]

[-1 -4 -5 0 5 4 1]

[-1 -2 1 4 1 -2 -1]

* [-1 0 3 0 -3 0 1]

[1 -2 -1 4 -1 -2 1]

[1 -4 5 0 -5 4 --1]

* [-1 6 -15 20 -15 6 --1

Figure 111-8. Center-weighted vector masks (Laws, 1980).
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and all but the first mask of each order are zero sum. The center-weighted

aspect of these masks is ideal for a spatial convolution filter because the tapered

ends avoid severe frequency domain sidelobes that result from box-car-truncated,

spatial domain convolution filters. Laws states that the vectors formed by the

mask coefficients are independent within each order, but are not orthogonal.

The third-order masks form the basis for the higher-order masks. Each

fifth-order mask can be generated by convolving two of the third-order masks.

The seventh-order masks can be generated by convolving a third-order mask with

a fifth-order mask, or by twice convolving third-order masks. Note that the third-

order masks contain the polynomial coefficients of the products (a - b)(a + b),

(a + b)(a - b), and (a. - b)(a - b). Actually, all of the masks can be generated

directly rom a -nbinoMi. expansion Of an appropri.ate nuber of terms rthO. a

than by convolution of lower-order masks.

Laws (1980) generated two-dimensional masks by forming vector cross

products of the one-dimensional masks. In the present study we have convolved

the images twice with a one-dimensional mask rather than form cross-product

matrix masks. The vector mask is applied first as a horizontal kernel, and then

the output of that operation is convolved with the vector mask applied as a

vertical kernel. Double application of vector masks in this fashion produces

results identical to a single onvolution with a c us-pruduct matrix kernel. The

reason for double application of a one-dimensional mask is to avoid the chore

of entering all of the elements of a large matrix kernel into the computer. The

resulting energy binning is therefore in the form of two-dimensional rings of

varying radii in the image energy spectrum. Radii of the rings will be the same

as the distance of the peak in the mask Fourier transforms from the origin of the

plots in Figures 11-9 or Ill-11.
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We now proceed to establish the fact that the variance of the images

resulting from convolutions with Laws' masks are actually the vaiues of image

energy falling in a series of spectral bins. Consider the seventh.-order masks given

in Figure 11-8. Each of these masks has been Fouri r transformed to obtain its

frequency domain equivalent. The Fourier transform squared (energy spectrum)

for each of the masks is shown in Figure 111-9. Note that the spectra associated

with these masks are narrow-banded with center frequencies ranging from DC

to the Nyquist frequency, fN, as the mask numbers go from I to 7. Referring

to the convolution theorem (Bracewell, 1965) we note that the convolution of

the image with the mask is equivalent to multiplying the Fourier transform of

the image by the Fourier transform of the mask. It is obvious from the narrow-

banded nature of the Fourier transforms of the mask that any such frequency-

domain product would contain significant non-zero values in only a imited range

of frequencies. Thus, convolution with a Laws' mask is equivalent to applying

a band-pass filter to the image. The variance of the image output from the

convolution operation is, then, the energy in the original image that falls within

the bandpass of the convolution filter. Therefore, the Laws' mask texture energy

measures are nothing more that a simple spectral binning of the image contents.

In Section II it was established that the oversampling of the KRMS im-

agery precluded any high-frequency content in the huages. We do not expcct

any useful ice discrimination information at frequencies above fI/ 3 . Therefore,

of thc 7 energy bins resulting from the seventh-order Laws' masks, only ntsks 1

and 2 are expected to cantain anything other than random noise. A preferable

arrangement for the KRMS image data would be to locate our 7 spectral bins

to sparn the range from DC to fN/3. To perform this arrangement, Laws' masks

of 21st ord. can be constructed and only the first seven used. Such masks have
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FIGURE 111-9, Normalized energy density spectra (Fourier transform
squared) of the seventh-order masks shown in Figure
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been constructed by repeated convolutions of the appropriate lower-order masks.

Figure III-10 lists the first 7 of the 21st order masks. Energy spectra of these

selected 21st order masks are plotted in Figure I1-11.

Figure 111-1.2 shows a typical sample of KRMS imagery over multiyear ice

and the result of convolving the masks listed in Figure 111-10 with this sample

image. Each of the convolution results has been individually enhanced to show

whatever features may be present in that particular image. Absolute comparisons

between the various filter outputs are, therefore, not possible. However, what

is obvious is the transition from lower-to-higher frequency content for masks 1

through 7. This transition visually demonstrates the frequency-binning proper-

ties that have been attributed to these masks. The "basketweave" texture in

ite, ighcr-frcqucrcy ,,Iter outputs appeared as a surprie. A definitive . .. i. --.

0 nation of this appearance is not available. It seems obvious that these patterns

are not related to the ice scene imaged by the KRMS, but are artifacts of some

type of coherent noise within the KRMS system. It is unfortunate that these

0 higher-frequency bins are dominated 'by this noise, which would be expected to

completely mask any ice texture information that might be available in these

spectral bins. However, we will carry all 7 Laws' mask texture energy variables

forward as candidate texture measures on the outside chance that some uceful

ice-type information may actually be present.

The 7 texture energy values associated with the 21st order masks given0I
in Figure 111-10 will be carried into the ice-texture analysis as candidate texture

measures. These measures will be named LM1 through LM7.

* 4. Gradient Analysis

Rosenfeld and Thurston (1971) have considered texture in terms of the
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21st ORDER MASKS:

1 1 -1 1 1 -1 r -1
20 18 -16 14 12 -10 -8
190 152 -118 88 62 -40 -22

1140 798 -528 322 172 -70 --8
4845 2907 -1581 731 237 5 83
15504 7752 -3264 952 --16 248 160
38760 15504 -4488 272 -664 400 -8
77520 23256 -3264 -1496 -1104 40 -352
125970 25194 1326 -3094 -494 -650 -338
167960 16796 7072 -2652 936 -780 208
184756 0 9724 0 1716 0 572
167960 -16796 7072 2652 936 780 208
125970 -25194 1326 3094 -494 650 -338
77520 -23256 -3264 1496 -1104 -40 -352
38760 -15504 -4488 -272 -664 -400 -8
15504 -7752 -3264 -952 -16 -248 160
4845 -2907 -1581 -731 237 -5 83
1140 -798 -528 -322 172 70 -8
190 -152 -118 -88 62 40 -22
20 -18 -16 -14 12 10 -8
1 -1 -1 -1 1 1 --1

Figure 111-10. Center-weighted vector masks.
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s uared) of the 21st order masks shown in Figure
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FIGURE 11-12. Illustration of image energy spectrum partitioning by
spatial convolution of a 128 x 128 pixel K9MS sample of
rnultiyear ice (upper left) with the 21st order masks
given in Figure 111-10. Imagcs labeled I through 7
are the result of the successive horizontal and verical
application of each of the masks to the original image,
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* amount of "edge" per unit image area. An edge can be. detected by a variety of

local mathematical operators, which essentially measure some property related to

the gradient of the image intensity function. Rosenfeld and Thurston (1971) used

* the average Roberts gradient over a neighborhood as a measure of texture. Other

investigators have used the second derivative of the image intensity function for

texture analysis. The second derivative approach is actually the gradient of the

* gradient. Triendl (1972) used the Laplacian operator to approximate the second

derivative of the image and then extracted texture parameters from a smoothed

version of the second derivative image.

0 In addition to the straightforward use of gradients or gradients of gradi-

ents, more elaborate forms of gradient analysis have been proposed. Landeweerd

and Gelsema (1978) generated textural parameters from the histogram of the

0 gradient image. Rosenfeld (1975) used a double gradient approach. He gener-

ated an image whose intensity is proportional to the edge per unit area of the

original image. Then the edge density image is further processed by additional

0 gradient analysis prior to textural feature extraction.

Here, a simple edge density approach was chosen to generate a texture

measure representing the gradient analysis category of texture measures. An

edge detection operator is applied to the image; the result is a gradient image.

The mean intensity of the entire gradient image is then taken to be a global

measure of the average edge per pixel. The edge operator chosen consists of
0

spatial convolution with an edge detection mask. A number of edge detection

convolution kernels have been developed. The mask chosen here is the Pre-

witt operator (Prewitt, 1970). This operator was chosen because the edges in
0

the KRMS imagery tend to be smooth, ramp-like transitions rather than sharp

discontinuities. Nashburg and Lineberry (1981) have shown that the Prewitt
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operator maximizes the output signal-to-noise ratio for uniform slope edges cor-

rupted by additive Gaussian noise. It is also less sensitive than the more common

Sobel and Roberts operators to noise of any variance (Hayden et al, 1987).

The Prewitt operator consists of a pair of convolution kernels for obtaining

the x and y components of the gradient of the image intensity function. These

components, g,(s, l) and g 1 (s, ), are obtained via convolution of the image with

the following kernels.

-1 0 11 -1 -1 -1.

-1 0 1 0 0 0
-1 0 1 1 1 1

Rom the g,(s, 1) and gy(., 1) images we can form a gradient magnitude image,

g(ag, 1), according to

g~~)=VM~) gts,i)2j. (Hi - ii)-

The mean intensity of the Prewitt gradient magnitude image is incorporated into

the global texture analysis under the name EDEN for edge density. Figure 111-13

shows the Prewitt edge magnitude images for typical KRMS images of first-year

and multiyear ice. The difference in mean brightness of these edge images is

apparent.

5. Run Length

The run, defined as a maximal-connected colinear sot of pixels, all with

the same intensity value, can be a useful texture measure. Various parameters

associated with runs could include the length of the run, gray-level value of the

run, or angular orientation of the run. Galloway (1975), Weszka et al. (1976),

Maleson et al. (1977), and Werman and Peleg (1985) have used various combi-

nations of these parameters associated with gray-level runs for texture analysis.
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FIGURE 111-13. Representative KRMS images of first-year and multi-
year ice (left) with their corresponding edge magnitude
images (right) formed by convolution of the image with
the Prewitt edge operators. Edge magnitude shown here
is formed from both the x and y edge components
according to Eq. 111-l.
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Gray-level run parameters are not expected to be good measures of texture

for KRMS data because of the high noise levels with respect to scene c,.intrast. In

o lte*r words, because of the noise in the imagery, adjacent pixels in the image are

very seldom at the same intensity level, even if the scene is uniform. Therefore,

most gray-level run lengths in the image would be 1, and this length is V. measure

of the system noise, not the texture in the scene. However, the gray-level imagev

might be converted into a binary image by thresholding the image at its rman

value. That is, all pixels with intensity values above tht rnan are assigned a

brightness value of 1 and all pixels with intensity below the mean are assigned a

brightness miue of 0. In this binary image one could argue that tlF'- run lengths

might reveal useful ice-type information, as follows.

For first-year ice, which has a very uniform scene brightness, intensity m

levels would be expected to shift back and forth around the mean on a pixel-to-

pixel basis. The expected value of run length in this case would be small, perhaps

two pixels or less on the average. However, with multiyear ice, both ridges and

melt ponds produce patches of higher or lower intensity in the KRMS imagery.

These patches may create areas within the image where all pixels remain above

or below ihe the mean brightness temperature, creating uniform patches of 0s

and ls over large areas. The mean run length in this case would be expected

to be significantly larger than was the case for the more uniform first-year ice.

This expectation is somewhat contrary to intuition, which tells us that the more

uniform ice would contain longer run lengths than the patchy ice. However, it

is the noise level and the thresholding into a binary image, combined with scene

uniformity, that determines mean run length within this type of thresholded

image. When these three factors operate in concert, uniform scenes result it

shorter binary run lengths than do patchy scenes as shown in Figure Il-.14.
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Therefore, the mean binary run length (MBRL) of KRMS images thresholded at

their mean value has been included as a candidate texture measure.

Two values of MBRL are calculated for a given image sample. One value

is for runs in the samples direction and the other for runs in the lines direction.

The MBRL value passed into the texture studies is the arithmetical mean of

the values computed individually for the two directions. MBRL values vary

ccnsiderably in these images as a function of direction. This variability is not

believed to be an indication of anisotropy in the image texture but, rather, an

artifact resulting from the KRMS antenna-to-antenna imbalance described in

Section II. MBRL values, therefore, are consistently lower in the lines direction

than in the samples direction. However, in the lines direction MBRL is still

correlated with ice type, so that averaging the two directional calculations of

MBRL produces useful texture measures for ice-type discrimination.

6. Summary of Candidate Texture Measures

Twenty-five texture measures have becn described here as candidates for

use in discrimination of sc,,.ic- types. These candidates will be carried forward

into the texture analysis, where soiic will be eliminated after evaluation on ice

image data according to the criteria eEtablished for texture measures at the be-

gim mng of thi, ction. Table III-1 surmmarizes these candidate texture measures.
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TABLE 11I-1. CANDIDATE IMAGE TEXTURE MEASURES

first-order statistics

mean MFAN
variance VAR
skew SKEW
kurtosis KURT

second-order statistics (GLC matrix)

inertia INR3, INR15
duster prominence PR3, PR15
loce homogeneity HOM3, HOM15
energy ENG3, ENG15
entropy ENT3, ENT15
correlation COR3, COR15

Laws' masks (spectral binning)

lowest frequency bin LMi
* LM2
* LM3
* LM4
* LM5
*T 2MG
highest frequency bin LM7

edgr " .ity

mean Prewitt edge magnitud- EDEN

run length

mean binary run length MB R1,
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W. THE TEXTURE ANALYSIS DATA SET

To determine if the candidate texture measures described in Section II-.C

possess the properties listed as desirable in Section II1-B, a set of fifty 64 x 64

pixel sample images were extracted from the available KRMS imagery. These

50 samples, referred to henceforth as data set A, are described in this section.

Values of the candidate texture measures will be calculated for each of the 50

sample images. Texture measures are then evaluated and discussed according to

the criteria established in Section III

A. KRMS SAMPLE IMAGES EXTRACTED AS DATA SET A

Each of the sample '.I,'s in data set A contain a single ice-type. The

ice types were determined by visual interpretation of the KRMS images and

coincident aerial photographs (Eppler and Farmer, 1983). First-year, second-

year, and multiyear ice are the only ice types contained in the KRMS imagery in

adequate arrouns to yield reliable texture statistics. The World Meteorological

Organization (WHO, 1970) combines these three categories into only two: first-

year ice and old ice. First-year ice is ice of not more than one winter's growth

that rnriges in thickness fron 30 cm to 2 m. Old ice is ice that has survived at

least ont surmmer's melt and commonly ranges in thickness from 2 to 4 m. For

this -tudy the old-ice category has been divided into second year and multiyear.

Second-year ice has survived one summer's melt. Multiyear ice has survived

rore than one summer's melt. 'i-'he ice imaged by this KRMS mission in March

1983 in the Beaufort Sea offshore from Barrow, Alaska, was p.edcminantly first-

year and secoind-yeax ice. Multiyear ice was observed very infrequently, ro its

represcntation in data set A is limited.

Figures IV-1 through IV-1t ohow the ten .'2 x 512 pixei KRMS images
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FIGURE, IV-1. Full 512 -x512 pixel image showing locatlozm where
64 x 64 pixel gubareas were extracted as samples MYI
through MY? and FY5 of data set A.-
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FIGURE IV--2. Full 512 x 512 pixel image showing locations where
64 x 64 pixel subareas were extracted as samples MYB
and MY9 of data set A.
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64 x 64 pixel subareas were extracted as samples MYXO
through MYIZ and FY6 through FY7 of data set A.
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FIGURE IV--4. Full 51Z, x 512 pixel image showing locations where
64 x 64 pixel subar'eas were extracted as samples SYIthrough SY? of data set A.
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FIGURE IV-5. Full 512 x 512 pixel image showing locations where
64 x 64 pixel subareas were extracted as sarples FYI
through FY4L of data set A.
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FIGUR E IV-7. Full 512 x 512 pixel image showing locations where
64 x 64 pixel subareas were extracted a5 3anples SY13
and SY14 of data set A.
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FIGURE IV-8. Full 512 x 512 pixel image showing locations where
04 x 64 pixel subareas were extracted as samples SY15
through SYI of data set A.
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FIGURE IV--9. Full 512 x 512 pixel image showing locations where
64 x 64 pixel subareas were extracted as samples SY19
through SY22 of data set A.
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FIGURE IV-1O. Full 512 x 512 pixel image showing locations where
64 x 64 pixel subareas were extracted as samples Y3
through SY25 of data set A
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* from which the 50 subirnages of data set A were extracted. The figures also

contain graphic inlays marking the exa.ct location of each of the extracted images

and its associated assigned sample identification number. First-year ice samples

* are labeled FY1 through FY7, second-year samples are dtesignated SY1 through

SY25, and multiyear samples bear labels MY1 through MY18. Figures IV-1

through IV-10 also contain vertical dashed lines. This vertical lines mark the

* 1 0 0 th sample in from each ege of the image. In Section II, considerations of

image distortion and resolution lead to the recommendation that the outer 100

samples be ignored in the analysis. Tol a large degree this recommendation has

* been followed. However, the reader will note that some of the extracted samples

overlapped into the forbidden edge areas. The violation of the guideline was

, I '1 I I I 1 4

lnavoiflaflie in these cases, u the i numoer aria amlount of C1ove1,r'ap iLILo

* the edge regions is small and should not significantly impact upon the analysis

results.

First-year ice is very uniform, so seven samples are considered adequate to

characterize this ice type for the present study. Variability within ice categories

increases with ice age, which leads to larger sampling requirements to reliably

characterize the older ice types. Only 18 subimages of multiyear ice could be

0 found for inclusion in data set A. Unlimited samples of second-year ice are avail-

able, but it makes no sense to obtain extremely large numbers of second-year

samples when multiyear samples are limited to 18. Therefore, 25 second-year

samples were selected to represent that ice type. Further, not all samples are

unique. Several sample pairs overlap to some extent, producing samples with

part of their area in common. In many cases, four samples were selected to be

adjacent in the original image so that these adjacent 64 x 64 pixel samples could

be treated as a single 128 x 128 pixel sample. The existence of both 64 x 64
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and 128 x 128 images in data set A permits some limited investigation into the

effects of sample size. Appendix C contains numeric values for each of the 25

candidate texture measures listed in Table III-1 for each of the 50 sample images

in data set A.

B. NORMALITY

The topic of multivariate normality of the image texture data set was

discussed in Section 111B.2. That section identified the linear correlation coef.

ficient of the Q-Q plot as the chosen measure of normality. Q-Q plots, like the

example shown in Appendix B, were constructed for each of the 25 variables in

data set A. Each variable resulted in two plots, one for second-year ice and one

for multiyear ice. (Q-Q plots were not constructed for first-year ice because of

the small sample size.) A histogram of the linear correlation coefficients of the 50

Q-Q plots from data set A is shown in Figure IV-11. The majority of the values

fail in the range of 0.95 to 1.0. It will be assumed that these are the normally

distributed variables. Eight Q-Q plots have correlation coefficients below 0.95.

These plots require further examination.

Four of the cases with correlation of 0,91 or 0.92 are SY-COR15, SY-LMl,

MY-ENG15, and SY-KURT. For CORI5, LM1, and KURT the multiyear corre-

lation coefficient values are 0.97, 0.98, and 0.95, respectively, and the second-year

coefficient for ENG15 is 0.98. Because the low correlation did not occur for both

the second-year and multiyear cases, it is concluded that these low values result

from the small sample sizes and are not truly indicative of nonnormality of these

variables. However, the remaining four cases with Q-Q plot linear correlation

coefficients in the 0.88 to 0.91 range are PR3 (both second-year and multiyear)

and PR15 (both second-year and multiyear). Because all cluster prominence
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cases show low correlation, it is concluded that duster prominence does have a

&d:k±'.-,e nornormality problem, which should be corrected.

Examination of the histograms of the duster prominence values shows

long tails in the positive direction. This type of nonnormality can often be

corrected by a logarithmic transformation of the original variables. Appli :ation

of the equations

LPR3 = in(PR3lO- 6 ) ± 5

and (IV - i)

LPR15 = 1n(PR15xlO- ) + 5

resulted in two new variables, LPR3 and LPR15, from the original PR3 and PR15

values. Q-Q plots of LPR3 and LPR15 resulted in four correlation coefficient

values ranging from 0.95 to 1.0, which is in the range that has been assumed to

represent normality. Therefore, the LPR3 and LPR15 variables have been added

to Table C-1 in Appendix C. The new variables will replace PR3 and PR15 in all

subsequent analysis. Data set A, after this transformation of duster prominence

values, is considered to be normally distributed within the limits of our ability

to measure normality of data sets of this relatively small size.

C. CORRELATION WITH ICE TYPE

Correlation between ice type ar.M the ammerical values of texture measures

was included in the list of desirable characteristics for texture measures in Section

III-B. This ability of texture measures to serve as discriminators of ice type

is, of course, the central requirement of this research area. The Bayesian ice-

type dassification based on each individual texture measure was chosen as the

measure of correlation between ice type and the candidate texture measures.
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* Appendix A contains the theory of maximum Bayesian dassification. Now that

the approximate normality of data set A has been established in the preceding

section (Bayesian classification assumes normally distributed variables), the ice-

.* type classification task can begin. The hard clustering of data set A will be

examined as a means of estimating the correlation of texture measure values

with ice type. Hard clustering and Bayesian results will be compared. The

* clustering approach is introduced because it can be extended more easily to

higher dimensional feature spaces.

The Bayesian classifier described in Appendix A represents a parametric

approach to estimating classification accuracy. The class separation thresholds

are calculated from two parameters: the means and standard deviations for each

i.. ... I vet t ..rc (na e Fq. (A-5) and (A 6)). Therefore these

*- statistics have been calculated by ice type for each variable in data set A. The

statistics are given in Table IV-1. Based on these statistics, Bayesian interclass

thresholds are calculated using Eqs. (A-5) and (A-6). The thresholds become the

* •limits of integration in Eq. (A-7), which results in the elements of the confusion

matrix from which the dassification accuracy is calculated according to Eq. (A-

10). Table [V-1 shows these calculated ice-type classification accuracies for each

* of the 25 candidate texture measures.

Note that MEAN is the best icc-classification variable with arn estimated

accuracy of 93.0%. However, MEAN is not a true texture measure in the strict

sense of the word. Of those texture measures other than MEAN, ENG3 and

ENT3 scored the highest accuracies of 83.5% and 83.3%, respectively. Five of

the texture variables have no calculated Bayesian classification accuracies given

in Table lV-1. These five variables are all poor classifiers of ice types whose

distributions overlap so strongly that Eq. (A-6) for classification threshold did
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TABLE IV-1. DATA SET A STATISTICS

Mesa FY SY MY Bayesian Clustering
Mean Std Mean Std Mean Std Accuracy Accuracy

MEAN 0.433 0.0411 1.689 0.1159 1.295 0.2049 0.931 0.88
VAR 0.379 0.0488 0.854 0.3826 1.631 0.5670 0.806 0.76
SKEW 3.120 0.1344 2.698 0.3715 2.448 0.3155 0.649 0.60
KURT 2.996 0.1723 3.421 0.5751 3.536 0.8060 - 0.50
INR3 0.451 0.0220 0.589 0.1169 0.895 0.2049 0.815 0.74
INR15 0.632 0.0789 1.473 0.6171 2.775 0.9244 0.820 0.78
LPR3 1.596 0.3572 3.444 1.0518 4.932 0.8165 0.806 0.74
LPR15 1.203 0.2970 2.598 0.9635 3.914 0.7502 0.781 0.70
HOM3 1.673 0.0732 1.537 0.1099 1.321 0.1556 0.717 0.66
HOM15 1.450 0,0819 1.059 0.1876 0.785 0.1523 0.817 0.78
ENG3 2.591 0,2109 1.762 0.3944 1.128 0.2731 0.835 0.78
ENG15 2.528 0.2615 1.569 0.4308 0.979 0.2560 0.823 0.76
ENT3 6.214 0.0817 6.626 0.2288 7.043 0.2099 0.833 0.80
EN'r15 6.227 0.1042 6.729 0.2690 7.152 0.2165 0.82J 0.78
COR3 4.008 0.6032 6.140 1.0932 7.127 0.5120 0.774 0.66
CORl5 1.754 -,5246 1.337 1.2328 1.364 0.n24 - 0.50

LM1 0.129 0.0334 0.531 0.4162 1.000 0.4900 0.724 0.68
LM2 0.097 0.0202 0.335 0.1734 0.644 0.2490 0.801 0.72
LM3 0.395 0.0663 0.652 0.1925 0.986 0.3695 0.751 0.68
LM4 0,691 0.0968 0.685 0.1077 0.888 0.2254 - 0.60
LM5 2.668 0.2997 2.207 0.2866 2.548 0.3861 - 0.46
LM6 1.875 0.1848 1.534 0.2150 1.678 0.2925 - 0.40
LM7 2.259 0.2191 1,906 0.2999 1.958 0.3520 - 0.42
EDEN 1.841 0.1044 2.067 0.2072 2.519 0.2625 0.747 0.62
MBRL 3.476 0.1540 4.695 0.6889 5.794 0.7692 0.812 0.80
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0 not have any useful solutions. ("useful solutions" means threshold values that

lie between the means of the two distributions.)

An alternative to the parametric Bayesian calculations would be to use

clustering techniques to actually classify data set A and compare the classification

results with the known ice types of eac7h sample. This alternative was pursued

here because the clustering approach can be extended to give classifications in0

higher dimensional feature spaces more easily than can the Bayesian approach.

The clustering scheme chosen is a hard clustering with normalized distance, di,

as the duster membership criterion.

- - (IV - 2)
fTi

* where x, is the value of the nth data point being assigned class membership, pi

and ai are the a priori mean and standard deviation of duster i. Sample n will

be assigned to that duster for which d, < dj for all 3 # i. This clustering tech-

* nique stiould give results identical to the Bayesian values if (a) the variables are

normally distributed, (b) the data set is large, and (c) all classes are represented

equp,'_Uy in the ensemble.

0 The statistics from Fable IV-1 have been used to supply pj and or values

ft, . (1,"r-2), and all samples have been clustered according to the resulting

distance values. The accuracies of the class assignments made by clustering the

0 50 samples of data set A are included as the last column in Table IV-1.

Comparison of the classification accuracies derived by the Bayesian and

clustering methods shows that the Bayesian results ae consistently higher than

the empirical estimates based on clustering of data set A. The reason for this

difference (hypothesized but not proven here) is that the Bayesian calculations
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were based on the assumption of equal a priori probabilities for each of the pos-

sible classes. In data set A the first-year class is represented by 7 samples as

compared to 25 and 18 samples, respectively, for the second-year and multiyear

classes. The reason that first-year ice was sparsely represented is that it is eas-

ily distinguishable from the other two, which means it can be easily classified as

first-year. Thus, the data set upon which the clustering was performed contained

an underrepresentation of the easily classified samples relative to the more dif-

ficult samples to classify. This imbalance in ice type representation leads to an

underestimate of approximately 6% in the classification accuracy.

The computational requirements for Bayesian classification become pro-

hibitive for high dimensional feature spaces. Therefore, the clustering approach

is used to examine how classification accuracy increases as texture measures are

applied in combination. Clustering can be extended to higher dimensions by

simply replacing x, and yj with vectors X9,, and A and defining the distance

metric as

= d, _j_ (IV - 3)

where E is the covariance matrix of Y,1 . Eq. (IV-3) has been applied to all pair-

wise combinations of the 25 texture measures calculated for data set A. These

bivariate classification accuracy values are given in Table IV-2. The interesting

thing to notice in this table is the manner in which the classification accura-

cies changed in comparison to the single variable cases. Several variable pairs

involving the MEAN variable gave 98% accuracy compared to 88% for MEAN

and 80% for the best of the true texture measures taken individually. Combining

texture with mean intensity resulted in significant improvement. However, if we

exclude MEAN and consider only the remaining variables, the MBRL/LM5 com-

bination gave the best classification accuracy at 86%. All combinations with ac-
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curacy values of 84% or higher are given in boldface numerals in Fable IV-2. All

of these better combinations (ENG3/HOM15, ENT3/COR15, MBRIj/HOM3,

MBIRL/LM5, MBRL/LM6, rnd SKEW/LM2) involve one good univariate clas-

ification variable with one very poor univar'ate classifier. It is noteworthy that

two good variables do not combine to form the best bivariate combinations. This

fac leads to two couclusions. First, the better single variables are, in essence,

alternate representations of the same texture information. Therefore, combining

these variables introduces no new information for ice-type classification. The

l' Cond conclusion is that it would be wrong to discard some of the very poor

c, "H j.1. UnI variables (a step which the author had intented to perform) because

in thc latter muli variate analysis, the worst texture measures in the univariate

'etrde may: well orcouiii ipuilniit.m

Once the mnultivariate clustering software was in place for the bivariate

calculations, it was a simple extension to combine all 25 texture measures into

the clustering problem. By using all 25 of the variables of data set A, ice types

could be classified with 100% accuracy. The MEAN variable was removed from

the calculations and a 24-dimensional clustering of the true texture variables

was performed. This 24-dimensional clustering resulted in a 94% classification

of data set A. A word of caution is in order when considering the adequacy

of our set of texture measures. First, remember that the image sample size is

64 x 64 pixels. The eialuation of classification accuracies is inexorably tied

to sample size. As sample size increases, noise in the texture data is reduced

and the clusters tighten, thereby improving interclass separability. However,

this accuracy evaluation is conducted n. the same data set that was used to

design the classifier, An independent lata set for accuracy evaluation would

give more reliable and probably lower estimates than the procedure followed
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here. Furthermore, the present data are from one location and one day. If data

from different days and from different geographical regions were included, then

numerical values for clustering accuracy in the ensemble of texture measures

used here would undoubtedly change. Therefore, the reader is cautioned against

placing too much importance on the exact values of clustering accuracies. The

accuracies are presented here only to give a rough idea of the usefulness of various

variables or combinations of variables. Conclusions beyond this are not supported

by the data or the analysis procedures.

D. LINEAR MIXING

The global approach to image texture analysis developed here requires

that texture measures mix linearly. This requirement was discussed in Section

lLi.B.3. To evaluate the mixing characteristics of the candidate texture mea-

sures, eight samples from data set A are used. Samples FY1 through FY4 were

combined into a single image, and samples MY13 through MY16 are combined

into another image. These sample combinations resulted in two 128 x 128 pixel

* images with widely different textures, which were mosaicked to form the "mix-

ture" image shown in Figure IV-12. Values of the candidate texture measures

were computed for this synthetic ice-type mixture, as well as for the individual

* pure ice-type halves of the image. These results are given in Table IV-3. IRom

these three measured values the percentage of the mixture that was multiyear

ice (assuming linearity) was calculated and presented in the last column of Table

* IV-3. Of course, the correct answer for percentage of multiyear ice in the mixture

is 50%. The texture variables, which resulted in approximately 50% Inultiyear

compositions based on linear predictions, have their values shown in boldface

* type in the last column of the table.
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FIGURE IV-12. A FY (left) /MY (right) mixture image. The difference
in brightness levels between the two halves prevents
enhancing both halves simultaneously. Top image
shows FY ice, bottom image shows MY ice.
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* TABLE IV-3. TEXTURE MEASURES FROM FIG. IV-12

Meas S.F. Measured Values Linearly Calc.t
FY Half MY Half Whole Image MY Fraction

0

MEAN 102 0.448 1.561 1.005 0.50
VAR 102 0.424 1.499 31.954 29.30
SKEW 100 3.061 2.200 3.046 0.02

* KURT 100 2.859 4.086 1.104 -1.43
INR3 102 0.459 0.777 1.257 2.50
INR15 102 0.657 2.430 5.049 2.48
LPR3 10 1.858 5.066 10.164 2.59
LPR15 100 1.463 4.174 10.098 3.19

* HOM3 10- ' 1.651 1.404 1.518 0.54
HOM15 10- 1  1.417 0.858 1.104 0.56
ENO3 10- 3  2.140 1.025 0.780 1.22
ENG15 -  2.015 0.750 ti.650 08 i

ENT3 10 6.412 7.223 7.531 1.38
* ENT 15 100 6.476 7.527 7.768 1.23

COR 3 10-1 4.573 7.409 9.805 1.84
COR15 10- 1 2.161 2.038 9.244 -57.59
LM1 1020 0.168 1.269 36.684 33.17
LM2 1018 0.103 0.557 0.320 0.48

* LM3 1013 0.367 1.144 0.751 0.49
LM4 1013 0.626 0.989 0.814 0.52
LM5 109 2.465 2.670 2.575 0.54
LM6 1O8  1.785 1.751 1.753 0.94
LM7 10T 2.181 2.126 2.132 0.89

* EDEN 101 1.847 2.303 2.302 1.00
MBRL 100 3.731 6.222 25.525 8.75

- t Linearly calc. MY fraction of mixture image is given by (col5 - co13)/(co14 -
coI3).
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Note in Table IV-3 that only the MEAN and 6 texture measures (IHOM3,

HOM15, LM2, LM3, LM4, and LM5) come close to linear behavior in the mixing

operation. This fact is significant in light of intentions to apply linear unmixing

theory in a global approach to analysis of image texture. The development of new

image texture measures that possess linear mixing properties should be pursued

if the global approach to texture analysis is to receive broad application.

The nonlinear behavior exhibited by the data in Table IV-3 was discovered

to result mainly from the seam between the two halves of the mixture image.

The large step in intensity arising from different mean intensities for the image

halves completely dominates the value of many of the texture measures, even

though the pixels boidering the seam occupy less than 1% of the image area. To

verify that the nonlinearity results from the seam, iuiwLitiu fruit Loth1 lv _ of

the mixture image were offset to have a mean v"iue of 128 digital counts. This

new mixture image, with matched mean intensities, is shown as Figure IV-13.

Texture measure calculations were repeated on this matched mean image with

the results shown in Table IV-4. With the background intensity step removed,

the number of texture measures that mix linearly is increased to 12.

Knowing that mean removal results in an increased number of usable

texture measures, a decision must be made. One can either proceed with a

greatly reduced number of texture variables, or produce an acceptable technique

for detrending mixture images. It is not desirable to restrict the variety of texture

measures under analysis, but detrending natural ice-type mixtures in KRMS

images is a major area of study in itself. The approach chosen here was to use

the largest possible number of variables while working with synthetic mixtures,

since mean removal in synthetic mixtures is a trivial problem. It will then be

demonstrated, using synthetic mixtures, that the smaller set of naturally mixing
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* FIGUPE IV-13. A FY (left) / MY (right) mixture image with the mean
brightness of each half offset to a value of 128,
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TA'BLE IV-4. TEXTURE MEASURES FROM FIG. IV-13

Meas S.F. Measured Values Linearly Calc.t
FY Half MY Half Whole Image MY Fraction

MEAN 102 1.278 1.281 1.280
VA R 102 0.424 1.499 0.962 0.50
SKEW 100 3.061 2.200 2,260 0.93
KURT 100 2,859 4.086 5.186 1.90
INR3 102 0.459 0.777 0.626 0.53
INR15 102 0.657 2.430 1.528 0.49
LPR3 100 1.858 5.066 4,395 0.79
LPRI5 100 1.463 4.174 3.521 0.76
IHOM3 10 - ' 1.651 1.404 1.522 0.52
IIOMI5 10- ' 1.417 0.858 1.136 0.50
ENG3 10- 3  2.140 1.025 1.390 0.67
ENG15 10- 3  2.015 0.750 1.155 0.68
ENT3 100 6.412 7.223 6.960 0.68
ENT15 100 6.476 7.527 7.178 0.67
COR3 10- ' 4.573 7.409 6.741 0.76
COR15 10-' 2.161 2.038 2.011 1.22
LMI 1026  0.168 1.269 0.679 0.46
LM2 1016 0.103 0.557 0.320 0.48
LM3 1013 0.368 1.145 0.752 0.49
LM4 103' 0.626 0.989 0.814 0.52
LM5 10' 2.466 2.670 2.576 0.54
LM6 10' 1.785 1.751 1,753 0.94
LM7 1 0 T 2.181 2.126 2.132 0.89
EDEN 101 1.847 2.303 2.088 0.53
MBR1, 100 3.731 6.222 4.807 0.43

t Linearly cac. MY fraction of mixture image is given by (col5 col3)/(col4 -
col3).
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texture measures does not significantly reduce unmixing accuracy in this data

set. We will therefore proceed to natural mixtures with a reduced variable set

and avoid dealing with the problem of detrending natural KRMS mixture images.

S

E. INVARIANCE UNDER LINEAR TRANSFORMATION

Section III.B.5 discusscd invatriance under linear transformation of image

* intensity values as a desirablc tat nonessential characteristic of image texture

measures. A 128 x 128 pixel image formed from data set A samples MY13

through MY16 was used to investigate this aspect of the candidate texture mea-

* sures. Numerical values of the texture measures for this image were given irl

Table IV-3. Intensity values within th;s image were then linearly transformed

according to Eq. (111-3), where the constants a and b are &ven values of 0.8 and

-20.0, respectively. Texture measures were recalculated for the transformed im-

age. Table IV-5 compares the texture measures calculated from the original and

from the transformed imagery, as well as gives a percentage difference between

the two values. from these difference values, only SKEW, KURT, COR3, and

OR15 are dearly invariant under linear transformation of intensities. Three

additional variables, ENT3, ENTi5, and MBRL, are probably close enough to

* invariant to be considered as such in the present application. However, these

invariant texture measures, with the exception of MBRL, are not those that riix

linearly. Therefore, numerical values of texture measures or coefficients involved

* in ice-type discrimination algorithms based on texture in this KRMS data set are

not universal. The philosophy of texture analysis developed in this dissertation

will be applicable to other data sets, but the specific numerical values derived

from this work will need to be recalculated for other data sets.

The development of image texture measures that are invariant to linear
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TABLE LV-5. EFFECT OF INTENSITY TRANSFORMATION ON
IIAGE TEXTURE MEASURES

Meas S.F. Calculated Values Difference
Orig. Image Trans. Image (%)

MEAN 102 1.561 1.049 -32.8
VAR 102 1.499 0.960 -36.0
SKEW 100 2.200 2.201 0.0
KURT 100 4.086 4.079 -0.2
INR3 102 0.777 0.499 -35.8
INR15 102 2.430 1.556 -36.0
LPR3 100 5.066 4.172 -17.6
LPR15 100 4.174 3.282 -21.4
110M3 10-1  1.404 1.744 24.2
HOM15 10' 0.858 1.088 26.8
ENG3 10-' 1.025 1.935 88.8
ENG15 10-3 0.750 1.400 86.7 -
ENT3 100 7.223 6.708 -7.1
ENT15 100 7.527 7.028 -6.7
COR3 10- ' 7.409 7.402 -0.1
CORI5 10-1 2.038 2.037 0.0
LMl 1020 1.269 0.812 -36.0
LM2 1016 0,557 0.356 -36.1
LM3 i1

3  1.144 0.731 -36.1

LM4 i0' a  0.989 0.632 -36.1
LM5 lol 2.670 1.710 -36.0
JM6 lol 1.751 1.129 -35.5
LM7 107 2.126 1.380 -35.1
EDEN 10' 2.303 1.845 -19.9
MBRL 100 6.222 6.575 5.7
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0 transformation of image intensity is highly desirable and is recommended as a

subject for further study.

F. SUMMARY OF THE TEXTURE ANALYSIS DATA SET

A set of fifty 64 x 64 pixel KRMS images, each containing only one of

three possible ice types (FY, SY, and MY), has been defined and named data set

0 A. The 25 candidate texture measures discussed in Section III were calculated

for each of these samples. The numerical values of these texture measures were

analyzed to lead to the following conclusions.

* All texture measures axe approximately normally distributed. (The duster

prominence variables required logarithmic transformation to achieve nor-

mality.)-

* Most of the texture measures do not :nix linearly. A mean removal step

was shown to solve the nonlinearity problem for some variables. Texture

0 measures with linear mixing properties, without mean removal, are recom-

mended as an area of future study.

* Texture measures, as a general rule, are not invariant to linear transfor-

- mations of image intensity values. This means that KRMS calibration, as

well as day-to-day environmental variability, cannot be ignored. Universal

algorithms are not to be expected from the present ensemble of image tex-

* ture parameters. A "recalibration" of image texture analysis algorithms is

indicated for each new KRMS data set.

* The 25 candidate texture measures proposed in Section III do seem adequate

in the sense that they contain sufficient texture information to reasonably

identify the ice type of the samples in data set A. In other words, successful
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clustering of data set A indicates that our texture measures form the basis

of an effective feature space, as "effective" it; illustrated in Figure 111-2.

* Very little improvement in ice-type discrimination power is observed as uni-

variate clustering progresses to multivariate dustering of the texture feature

vectors. This lack of improvement indicates that the various texture mea-

sures are highly correlated with each other or, in other words, many texture

measures indicate the same type of texture information. The true dimen-

sionality of the data set is therefore seen to be significantly less than the

number of texture measures included in the study. This correlation between

variables indicates that farther along in the study, a large reduction in di--

mensionality is expected from factor analysis, and that a relatively small

number of end members will be required to model the data set as an en-

semble of linear mixtures of end members.

Of the 25 texture variables calculated for data set A, only 12 will be

carried on into the analysis of synthetic mixtures that will have means removed.

The 13 variables eliminated are the result of failure to ix linearly. As the study

progresses to natural mixtures, the 12 variables will be further reduced to 7. This

result emphasizes the need for further investigation into new texture measures

with linear mixing properties.

T'he one characteristic of texture measures identified as desirable in Sec-

tion III, but not addressed in this Section, is the constant sum requirement

imposed on texture feature vectors by the CABFAC and QMODEL computer

codes, which are utilized for factor analysis and linear unmixing in later analysis

steps. The constant sum problem is the subject of Section V.
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* V. THE CONSTANT-SUM CONSTRAINT

The texture feature vectors representing each sample image in data set

A have been developed for further analysis using the linear unmixing model

contained within the CABFAC and QMODEL computer codes. (CABFAC

and QMODEL processing is not encountered until Section VI.) However, the

constant-sum constraint, which is an integral part of the CABFAC/QMODEL

implementation of linear unmixing, will be the topic of this section. Data set A

is not constant-sum. Summations of the columns of Table C-1 range from 47.8

to 75.1, so this problem must be addressed.

'The constant-sum constraint can be traced to Mibescb (1976a, 1976b,

1976c), who approached the unmixing problem by associating axes of an oblique

* feature space with end members, and vector components in this end-member co-

ordinate system with end-member compositions in each sample. However, linear

unmnixing can be performed on any linear data set; the constant sums are not

* a theoretical requirement. We will see how any general linear data set can be

unmixed and how the constant-sum constraint arises from the Miesch approach.

Consider a multivariate data set consisting of sample vectors with M

measurements comprising each vector. Sample vectors, Xi, consist of oil ,.., xi,M,

where xii represents the jg, measurement on the ith sample. The constant-sum

constraint can be written,

xij = K,(V-i1)

for all i, where K is a constant.

Linear mixing is illustrated by Figure (V-la), where M = 2. If end

members E and E2 are mixed in equal proportions to form sample X 1 , then
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FIGURE V-1. One-dimensional linear mixinig of ()variable row sum
data, and (b) constant row sum d ata. Fand F. are axes
of the feature space. E, andE. are end members.
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assuming individual measurements nix linearly,

x = (e1 + e21)/2
(1'- 2)

;X1 2  (E12 + e22)/2.

Clearly, if point X, = (211,aZl2) is plotted in Figure (V-ia), it will fall equidistant

from El and E:I on the line segment Fq E2 that connects these end members. Any

other samples that could possibly be formed by mixing E1 and E2 in varying

proportions would similarly fall on the line E1 E2 . Thus, one gets physically

meaningful unmixing results if the data set includes only points that fall on

E1 E2 . If the samples do not lie in a line between the end members (or close

to a line, allowing for noise in the data), then applying unmixing algorithms

is unjustified because the data set is not made up of mixtures of E1 and E2.

The need for a linear constraint on the data set is, therefore, obvious. Equation

(V-i), which expresses the constant.. im constraint, does indeed define a line.

However, Eq. (V-i) represents only a subset of the possible lines that exist in

a two-dimensional measurement space. Line E1 F2 in Figure (V-ia) does not

satisfy Eq. (V-i). Nonetheless, we have just shown that the linear equation (Eq.

(V-2)) can be applied to form mixtures that fall along this line. The inverse

procedure for unnixing data along Ej E2 is equally straightforward. Therefore,

E E 2 is dearly a valid mixing/unmixing line, even though it is not constant.-sum.

The only constraint on a data set for unmixing that arises from the mathematics

is the general hyperplane equation

Zaj ,= K. (V - 3)II

The constant-sum constraint is a special case of Eq. (V-3), where a = 1 for

all j. In other words, the constant-sum constraint is more restrictive than the

mathematics of linear unmixing requires. Many data sets that satisfy Eq. (V-3)
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and that could be unmixed in principle cannot be processed using the CAB-

FAC/QMODEL programs because of the constant-sum requirements associated

with that code.

If we require the end members to lie on the axes F1 and F2 at unit distance

from the origin, as shown in Figure (V-lb), then the mixing line is also a constant

sum line where K == 1. In this case the proportion of El in sample X1 is simply

x11, and the proportion of E2 in sample X, is x12 . The end members lie on

the axes, and the coordinates of the samples are the end-member proportions,

which is one advantage of constant sum data. In most cases the coordinate

system will be oblique rather than orthogonal as shown in Figure (V-lb), but the

same principle of associating sample coordinates with end-member compositions

also applies in the oblique case. In the general case shown in Figure (V-la)

the calculation of end-member compositions is more complex. In the general

unmixing case, end-member proportions are given by

t l proportion (,,, - e2l)/(ell - C2l)
(V -4)

E2 proportion (ell - xj,)/(ell -

The additional complexity associated with the general case can become signifi-

cant as the dimensionality of the feature space becomes large and the basis vectors

are oblique. The CABFAC/QMODEL programs were designed to take advantage

of the simplification that results from constant-sum data matrices. In addition

to the simplification just mentioned, other aspects of the CABFAC/QMODEL

code developed over t-, Years took advantage of the constant-sum assumption.

For example, dirnensioality reduction by identifying eigenvectors of the cosine 0

matrix (discussed in Section VI) is only guaranteed to be a reasonable approach if

the data are at leaat approximately constant-sum. Therefore, for several reasons,

the constant-sum constraint cannot be violated when using these programs.
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Klovan (1981) has published a generalization of Q-mode factor analysis for

data matrices with variable row sums. The Klovan method involves projecting

data points onto a plane of constant sum K, where K is the average row sum for

the data matrix. Ki, the row sum for the it sample vector is saved for later use.

The analysis proceeds in the K plane. The resulting composition loadings and

composition scores are then scaled by K/Ki so that estimates of the raw data

can be obtained in the original metric. The Klovan method would seem (to the

author) to be useful only in those cases where the original data are very close

to constant-sum and only small adjustments are required. For other cases where

the data were in a hyperplane nearly perpendicular to the constant-sum plane,

* the Klovan method could result in a large loss of information from the data set.

Therefore, this solution does not seem to be practical for the general variable

row-sum problem. The iovan method was not utilized in this study.

Full (1988) claims to have a general variable row-sum version of CAB-

FAC/QMODEL operational at the time of this writing. However, this software

was not available at the time that this analysis was performed. We were therefore

forced to find alternatives to deal with the variable row-sum nature of this image

texture data.

We have chosen to deal with the constant-sum problem by describing a
0

data set transformation that would operate on linear data sets obeying, at least

approximately, the general linear condition of Eq. (V-3) to produce constant-

sum data that obey Eq. (V-i) precisely. Such preprocessed data would then

be suitable for processing by CABFAC/QMODEL. The transformation, named

the "Scale Invert then Force Transformation" (SIFT), will be demonstrated on a

simple two-dimensional data set consisting of 10 samples. The SIFT will then be
0

extended to hyperspace and applied to the usable variables from data set A to
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form a new data set, called data set B, which will be passed into the CABFAC

factor analysis in Section VI.

A. THE SCALE INVERT TI'EN FORCE TRANSFORM

1. The Concept

Tile mathematically rigorous approach to forming constant-sum data sets

from linear data would be to find a best-fit hyperplane to the linear data set, and

then find the rotation that would transform this best-fit plane to a constant-sum

plane. If the original data were nearly linear, then the rotated data points would

be dose enough to constant-sum that they could be forced to true constant-sum

without losing significant information content. The equation that forces a data

set Xi to constant-sum set X' is given by

To illustrate this "fit, rotate, then force" method, referred to hereafter as FRF,

the hypothetical two-dimensional data set shown in Table V-1 will be anal-

yzed. These data are mixtures of the end members El = (0.41,0.40) and

E3 = (1.25,0.63), plus some noise so that the data set is not perfectly linear.

This data set has no significance. These values were made up by the author

in order to provide a simple data set of known end-member proportions, which

could be used to illustrate the SIFT and FRF procedures and to show that these

are similar, but not mathematically identical means for forming constant-sum

data. End members El and E2 are samples 8 and 2, respectively, in Table V-1.

The fourth column of Table V-I is the row sum for each of the samples.

Note that the sums range from 0.81 to 1.88, dearly indicating the variable row-

sum nature of this data. Column 5 of Table V-1 is the percentage of end-member

I-1O
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TABLE V-1. A HYPOTHETICAL TWO-DIMENSIONAL DATA
SET

Sample Xti xi2 il + Xiu oE t

1 1.10 0.55 1.65 19.3
2 1.25 0.63 1.88 0.0
3 0.51 0.45 0.96 87.1
4 1.20 0.58 1.78 7.1
5 0.80 0.48 1.28 54.3
6 0.75 0.53 1.28 57.8
7 0.69 0.49 1.18 65.7
8 0.41 0.40 0.81 100.0
9 0.98 0.56 1.54 32.1

10 0.62 0.45 1.07 75.0

t %E1 is calculated by projecting the sample onto the line El E2 and then
applying Eq. (V-4),

0

0

S
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El that is present in each of the samples. Even though the hypothetical data

set is not constant-sum, it is highly linear as evidenced by a linear correlation

coefficient between xjj and x, 2 of 0.95. A least-squares linear fit to the data

results in a line described by Eq. (V-3), where a, = --0.72, a2 = 3.12, and

K = 1.0. Figure V-2 is a plot of these data. The linear fit to the data and the

"row sum = 1" line are also shown in the figure. From Figure V-2 we can see

that a clockwise rotation of 580 would put the best-fit line into a constant-sum

orientation. This two-dimensional rotation can be accomplished by subtracting

the mean vector Y = (0.831,0.512) from each of the data vectors, premultiplying

the mean-removed data vectors by the matrix

[coaO sn
-sinO cosOJ'

where 0 is the angle of rotation, and then adding the mean vector to the result.

The data set that results from this rotation about the mean to the constant-sum

orientation, followed by a forcing to the "row sum = 1" line (Eq. (V-5)), is listed

in Table V-2 and plotted in Figure V-3.

By comparing the last columns of Tables V-1 and V-2 we see that the FRF

procedure has resulted in slightly altered proportions of end-member El. The rms

difference between E1 compositions in Tables V-1 and V-2 is 2.2%. The rotation

does not change the E1 proportions, since a rigid rotation leaves relationships

between samples unchanged; rather, the forcing to constant-sum via Eq. (V-5)

alters compositional calculations. The rotation prior to application of Eq. (V-5)

is necessary to minimize the errors in compositional estimates introduced by the

forcing procedure. The need for the rotation is obvious if one pictures a linear

data set laying along the xia = xa line. In this case, forcing to constant-sum

would collapse all data points to the same location on the constant-sum line,
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TABLE V-2. DATA FROM TABLE V-1 AFTER THE FRF
TRANSFORMATION

Sample X 2 x[ + %E t

1 0.768 0.232 1.000 17.6
2 0.840 0.160 1.000 0.0
3 0.477 0.553 1.000 80.7
4 0.819 0.181 1.000 6.5
5 0.602 0.398 L. 00 53.6
6 0.576 0.424 1.000 59.2
7 0.543 0.457 1.000 66.4

8 0.388 0.61.2 1.000 100.0
9 0.698 0.302 1.000 32.8

10 0.503 0.497 1.000 75.1

% %E is calculated by applying Eq. (V-4).

101



1.2

1.07

08

0.6 ' ,Best Fit,

0.4 -

\\

N
0.2

AN

02 0.4 06 0.8 1.0 1.2 1.4 F1

FIGURE V-2. Plot of the hypothetical data set listed in Table V-j.
Least-squares linear fit to the data and constant-sur
lines are also shown.
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FIGURE V-3. Illustration of rotation and constant-sum forcing of
the data shown in Figure V-.,
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which would result in a total loss of compositional information contained in the

original data.

The extension of the FRF approach to large data sets of high dinensional-

ity is beset by mathematical complexity and computational burden. Therefore,

an alternate approach to forming constant-sum data from general linear data

sets is presented here. The proposed data transformation avoids multiple linear

regression and hyperspace rotatiomi, while giving nearly equivalent results, at

least for the simple hypothetical data set examined here. The data set from

Table V-1 will be used to show that useful constant-sum data can be obtained

by three steps.

* Scale each variable over the range of 0 to 1.

* Invert xj2 by replacing xi2 with (1 - x 2 ).

* Force data to constant sum of 1 using Eq. (V-5).

Figure V-4 graphically illustrates each step. Table V-3 contains the constant-sum

data set thus derived. Comparison of the right column of Table V-3 with the

same column in Table V-1 allows us to calculate the loss in mixing accuracy that

results from this simple constant-sum transformation. The comparison shows

that the percentage of E1 in each rample in Table V-3 differs from the percentages

in 'fable V-1 by an rms value of 5.5%. This value is compared to anl error of

2.2% introduced by the more complex FRF transformation leading to the data in

Table V-2. Thus) the performance of the SIFT is slightly inferior in this case to

the inore rigorous FRF algorithm. General conclusions concerning the relative

accuracies of the two methods should not be drawn from this one example. The

unmixing accuracy of the SIFTed data could have been forced to come out to

any desired value by changing the values in the hypothetical data set accordingly,
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FIGURE V-4. Graphical representation of the scale (b), invert (c), and
force (d) transformation (SIFT) of the data shown in
Figure V-2.
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tI
TABLE V-3. DATA FROM TABLE V-1 WITH THE

SIFT APPLIED

Sample ilt ti - E-  t

1 0.702 0.298 1.000 29.8
2 1.000 0.000 1.000 0.0
3 0.132 0.868 1.000 86.8
4 0.812 0.188 1.000 18.8
5 0.416 0.584 1.000 58.4
6 0.482 0.518 1.000 51.8
7 0.354 0.646 1.000 64.6
8 0.000 1.000 1.000 100.0
9 0.691 0.309 1.000 30.9

10 0.242 0.758 1.000 75.8

,1L',1 is calculated by applying Eq. (V). m
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The results of both the FRF transformation and the SIFT are data dependent.

This comparison has been conducted only to demonstrate the SIFT procedure

and to show that in some caies, such as the hypothetical data set used here, the

SIFT and FRF results can be similar in terms of resulting unmixing accuracy.

A multidimensional version of the SIFT will be applied to the image texture

data analyzed in this study. The appropriateness of this algorithm for forming

constant-sum data will tend to be further substantiated when we compare the

unmixing results of raw data, forced to constant-sum, and SIFTed data in a later

section. However, a precise estination of the errors introduced by the SIFT of

this image texture data can be established only by processing these data using

a variable-sum version of CABFAC/QMODEL in the future.

The scaling of variables that is proposed in connection with the SIFT is

not a new idea. The CABFAC code has contained anl option to scale th-ie data

over the range 0 to 1 for many years (Klovan and Imbrie, 1971). Scaling is

normally performed to balance the weighting of variables when magnitudes axe

extremely different. The present texture variables range in value by many orders

of magnitude, so a scaling of the data would be advisable even if the SIFT was not

performed. The original contribution here is the inversion of one of the variable3

in order to bring, the data set into a more nearly constant-sum orientation prior

to forcing to constant-sum.

It should be reiterated that scaling and range inversion are both linear

operations; therefore, the unmixing daracteristics of a data set should not be

changed in any way. Forcing to constant sum is a nonlinear process that can

degrade unmixing calculations on the forced data set. Scaling and range inversion

are performed to minimize the adverse effects that may result from forcing to

constant-sum.
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2. Extension to Higher Dimensions

The SIFT can be easily extended into hyperspace. For the M-dimensional

case the scaling of all variables over the 0 to 1 range remains as the first step.

However, the inversion step becomes more involved. To perform the inversion,

one variable is selected as a reference variable. The choice of reference variable

is arbitrary; for purposes of discussion we will assume the first variable is the

reference variable. Correlation coefficients are then calculated between the ref-

erence variable and each of the M - 1 remaining variables. Certain variables

are then inverted and others left unchanged in such a manner that half of the

variables are positively correlated and the other half negatively correlated with

the reference variable. (The (1 - xii) range inversion of a scaled variable will

change the sign of its coefficient of correlation widt respect to the reference van- .

able.) The procedure used here is to make all odd-numbered variables positively

correlated, and all even-numbered variables negatively correlated with the refer-

ence variable. The hypothesis put forth here is that if the original variable-sum

data were nearly linear, then the scaled, half-inverted data will be close enough

to constant sum that it can be forced the rest of the way with a minimal loss of

information content.

3. Data Set B

The 12 texture measures identified in Section IV as being suitable for

analysis of synthetic mixtures axe extracted from data set A and SIFTed to form

data set B, which will be the subject of the first unmixing studies. The row sums

of data set B after range scaling, but prior to inversion or forcing, range from 2.40

to 8.65. VAR is selected as the reference variable. Table V-4 shows the correlation

coeflicients between VAR. and the other 11 variables. INR3, HOM]5, LM1, LM3,
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TABLE V-4. CORRELATION OF TEXTURE VARIABLES
WITH "VAR"

Variable r Variable r

VAR 1.000 LM2 0.843
INR3 0.937 LM3 0.734
INR15 0.962 LM4 0.572
HOM3 -0.779 LM5 0.122
HOM15 -0.877 EDEN 0.888
LM1 0.903 MBRL 0.878
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* LM5, and MBRL were range inverted to make odd- and even-numbered variables

positively and negatively correlated with VAR. After inversion, row sums varied

from 5.20 to 6.94, which is much closer to a constant value than were the row

* sums prior to inversion. The inverted data are then forced to a constant sum of

1, thereby completing the SIFT procedure. Appendix D contains the resulting

data set B in tabular form. Two questions should be addressed in connection

Swith the formation of date set B. Is the data set nearly linear so that application

of the SIFT and the subsequent attempts at unmixing are justified? How much

ice classification power has been lost by reducing the number of variables from

* 24 to 12?

The linearity of the data set has been inferred in Section WV, where it was

observed that te iceaiica accuracy b asod on custering did not improve

-* significantly as the dimensionality of the clustering feature space was increased.

The linearity of the data is confirmed here by direct calculation. A fit of the 12

texture measures from data set B to the general linear hyperplane equation (Eq.

* (V-3)), by multiple linear regression, resulted in a multiple correlation coefficient

of 0.991. This high value for multiple correlation coefficient confirms the general

linear nature of data set B.

The loss of ice discrimination power resulting from the reduced number of

texture of variables was invebtigated by clustering of the 12 variables from data

set B, and comparing cluster memberships with known ice types for each sample.

0 In Section IV, where similar clustering was performed using 24 of the data set

A variables (MEAN was excluded), the resulting ice classification accuracy was

94%. Clustering of data set B resulted in a 92% classification accuracy, indicating

that the loss of ice discrimination power in going from. 24 to 12 variables was not

significant.
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Data set B is now ready for factor analysis in Section VI. Factor analysis

will determine the true dimensionality of the data set and give an indication of

the number of end members supported by the texture data.
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VI. UNMIXING OF PURE SAMPLES

A. THlE LINEAR MIXING MODEL

The linear mixing model can be stated,

K

k:= 1

where !3k is the k" end member. That is, sample vector X i can be approximated

by a weighted sum of several (K to be exact) end-member vectors. A constraint

on the weights, aik, is that

V ai4 =1.(VI- 2)
k

If the Ek vectors represent "pure" end members, then linear unrnixing theory

proceeds to interpret the aik coefficients as representing the proportions of end

members Ek present in sample i. This interpretation is consistent with the

constraint of Eq. (VI-2), since the sum of the end-member proportions in a

sample must be unity, i.e., 100% of every sample must consist of something.

Since our stated objective is to app!y unmixing theory to image texture data,

the first question that arises is whether our data fit the unmixing model of Eq.

(VI-1). The relevant questions are as follows.

* Eq. (VI-1) defines an approximation of Xi by a weighted sum of end mem-

bers. How close does this approximation need to be, to be useful?

* How many end members, i.e., what value of K is necessary to provide

the desired accuracy in the approximation? In the trivial case where K is

equal to the number of samples in the data set, Eq. (VI-i) reduces to an

exact expression. However the exact solution, where every sample is an end

membcr, is of no practical value. Unless the -Xj vectors can be approximated
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with sufficient accuracy when K is relatively small, the uninixing analysis

will usually be difficult to interpret and, therefore, will offer little new insight

into the nature of the data set.

* What axe the mixing proportions of the various E s in each of the samples,

i.e., what values of the aiM coefficients will fit Eq. (VI-1) to our data set?

* Do the end members and mixing proportions of these end members in each

sample lead to improved understanding of the physical nature of the data?

Data set B will be used to begin to address these questions. Two pieces

of a priori information are availtble. First, all samples in data set B are "pure"

samples of a single ice-type. Since the data set contains no ice-type mixtures,

the aik coefficients should have values dose to 0 or 1 if the linear mixing model

is appropriate for this texture data. The second useful fact is that the number

of end members is expected to be three (first-year, second-year, and multiyear

ice). It is not certain that the data analysis will actually support exactly three

end members just because conventional arctic wisdom considers thtse three ice-

types as unique. However, K should certainly be small. If, for example, it was

found that Eq. (VI-1) could be adequately approximated only if K > 10, then

the unmixing model is obviously a bad choice for analyzing these KRMS image

textures.

The number of end members is associated with the true dimensionality

of the data set. In Figure (V-i), which illustrated two end-member mixing,

mixtures of the two end members were shown to lie in a straight line connecting

the end members. Therefore, in that case, two end members resulted in a one-

dimensional mixture data set. The "true" dimensionality of the data set was one

less than the number of end members. This relationship holds true for higher
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dimensioned feature spaces as well. That is, the number of end members required

to approximate Eq. (VI-1) is one larger than the true dimensionality of the data

set. Therefore, the search for the required value of K translates into an analysis

of the data set dimensionality. Further information on selection of the proper

number of end members is available in Bezdek (1974), Miesch (1976b), and Full

et al. (1981).

B. TRUE DIMENSIONALITY OF DATA SET B

The previous sections showed that the 12 variables of data set B are

highly correlated. Therefore, we know that the true dimensionality of the data

is less than 12. However, analytic determination of this dimensionality is not

a simple problem. The general approach to the structure of multivariate data

sets is to assume that the observable, or manifest, variables can be represented

as functions of a smaller number of latent, or hidden, variables. Normally the

functional relationships between manifest and latent variables are constrained

to be linear. That is, the latent variables axe expressed as a weighted stun of

the manifest variables. If Xi is the original data vector whose components are

the values of the manifest variates, and if k4 is the same data vector expressed

in a feature space whose basis vectors are the latent variables, tLen the linear

relationship bctwecen Xi and X! can be written as a matrix equation,

X = XI T, (VI - 3)

where T is a square matrix containing the coefficients of the linear relationship.

Eq. (VI-3) is the standard equation for transformation of coordinate systems.

'rte search search for latent variables is therefore nothing more than a search

for a particular type of coordinate transformation. The number of "significant"
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latent variables in the new transformed feature space is effectively the true di-

mensionality of the original data.

The problem is, then, to find a "best" coordinate transformation matrix,

T, to use to in Eq. (VI-3) to convert data vectors from manifest to latent feature

space. One could specify a transformation that requires the variance in the

original data set to be preserved in the latent feature space. This approach

has been given the name Principal Components Analysis (PCA). However, one

might also define T so that the original data set can best be reconstructed from a

reduced set of the latent vector components. This approach has been termed Q-

mode Factor Analysis. Other alternatives for defining T could also be proposed.

However, we will confine discussion here to the two common techniques just

mentioned. -

1. Principal Components

Under PCA the original manifest variables are transformed (linearly) into

a smaller set of new latent variables (called principal components), which account

for the largest possible amount of variance in the data set. The variance of a

multivariate data set is expressed by the covariance matrix, C.

NC-- (N - y) - Wi)(Y (V -4
i=1

Use of the covariance matrix to define a variance preserving coordinate system

transformation relies on the concept of spectral decomposition of a matrix (John-

son and Wichern, 1982). Spectral decomposition of a K x K symmetric matr".,

A, states that the matrix can be expressed as a weighted sum of vector cross..

products.
K

K (VI -- 5)

k=
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The vectors 4Fk are usually normalized to unit length , i.e., 4Ck- T = 1, and the Ak

coefficients adjusted accordingly so that the As carry the magnitude information

for each term of Eq. (VI-5). It is customary, then, to arrange the terms of the

equation in order or decreasing values of A;. Proof of Eq. (VI-5) can be found

in Dunn (1928).

Pairs of AM ard C that satisfy Eq. (VI-5) can be found from eigen analysis.

Eigenvalues, Ak, can be found by solving the 0 4 degree polynomial equation

(known as the characteristic equation)

u JA - )AIJ = 0. (V 1 - 6) _

The left side is the determinant of the matrix A - Al, where I denotes the identity

matrix. Corresponding to eveiy vignvalue, Ak, is aL Cgenvector, 6'k, such that

(A - A )=O, 0 k = K (VI- 7)

Further details concerning eigen analysis are available in numerous references

such as Cullen (1966), Finkbeiner (1966), MacDuffee, (1943), Thrall and Torn-

heim (1957), and White (1966).

Certain facts from eigen analysis will be recalled. One theorem on this

subject states that if all the elements of the matrix are positive, which is the

Icase for a covatialce matrix, theit the eigenvalues are also positive. A second

theoren states that for a real synmetric matrix (again, the covariance matrix0I
qualilie5,) the eigenvectors correspondiag to distinct eigenvalues axe orthogonal.

Yet another useful fact is that, since the eigenvectors in Eq. (VI-5) appear only

in quadratic terms, there is a sign ambiguity in eigenvectors. That is, 4 and -ek

are equivalent eigenvectors. Although Eqs. (VI-6) and (VI-7) provide a means of

calculating eigenvalues and eigenvectors, direct solution of these equations is not
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feasible when the number of variables is large. For this reason efficient numerical

methods have been developed for eigen analysis. The CABFAC computer code

used in this study employs Houneholder's method (Wilkinson, 1960).

When eigen analysis has been performed on the covariance matrix, the

columns of the manifest to latent transformation matrix, T, are formed from

the eigenvectors (the principal components) of the covariance matrix. When the

data set is then transformed into the latent coordinate system (Eq. (VI-3)),

the relative magnitudes of the eigenvalues express the proportion of the original

variance captured by the new axes in the principal component feature space.

Mathematically, the proportion of total variance associated with each principal

component is

% variance n ek = Tr C -

The application of PCA to data set B results in the proportioning of

variance between the 12 principal components shown in Table VI-1. The di-

mensionality of this data set is not obvious, based on this table. If 90% of the

variance is a sufficient representation of the original data set, then the data set is

two-dimensional (three end members) as we expect it to be from a priori knowl-

edge. However, on what basis can we say that 90% of the variance is sufficient?

There is no logical criterion upon which to make this decision. The absence of

meaningful criteria for determining what proportion of the variance should be

retained is a weakness of PCA.

Another weakness of PCA is the failure to make a distinction between

varance and information (Ehrlich and Full, 1987). In addition to ice-type infor-

mation, variance includes random uncorrelated fluctuations, such as instrument

noise, and other fluctuations not related to ice type, such as atmospheric path-
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TABLE VI-1. EUGENVALUES OF C FROM DATA SET B

k Eigenvalue %/ Variance Cum., %

1 33.881 67.76 67.76
2 7.87-9 15.76 83.52
3 2. 8 69 5.74 89.26
4 2.087 4.17 93.43
5 1.225 2.45 95.88

(6-+N) -4.12 100.00
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length efftcts. In sore data sets the larger principal components may actually

capture noise or other aspects of the variance structure not related to ice type.

Clearly, it is possible that the third or fourth principal components may carry

the most ice-type information, even though they may represent only a small per-

centage of the total variance. Therefore, determining data set dimensionality

from PCA is beset with difficulty.

2. Q-mode Factor Analysis

Miesch (1976b) used a more definitive method for judging dirrensionality

of a multivariate data set. He proposed that if the dimensionality of a trans-

formed data set is sufficient to adequately represent the original data, that fact

would be exhibited by an even distribution of the unaccounted variance across

all of the originally measured variables. A concentration of the unaccounted

variar,ce ia only a few of the original variables can therefore be interpreted as an

indication that the reduced data set is of insufficient dimensionality.

The distribution of the residual variance can be determined by back-

calculating the sample vectors from eigenvector space to the original variable

space. A coefficient of determination between each of the original variable values

and the back-calculated values can then be computed. If the coefficients of de-

termination are large and are nearly equal for all of the original variables, then

the redttced eigenvector feature space adequately represents the original data

according to the Meisch criterion. If one or more of the variables have small

coefficients of determination relative to the other variables, then the residual

variance is concentrated in these variables and the dimensionality of the reduced

feature space is too small to adequately represent the original data.

Since the Meinch criterion for dimensionality involves reconstruction (f
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the original sample vectors from the reduced sample vectors, an alternative to

the covariance matrix as the basis for the eigen analysis is appropriate. If we form

a matrix consisting of the cosines between all possible pairs of sample vectors

and subjct this matrix to eigen analysis, then the result is a dimension-reducing

transformation that preserves angular relationships between sample vectors, i.e.,

preserves maximum reconstructability of the original data set. This type of

transformation is consistent with the back-calculating criterion that is used to

judge dimensionality. Such a. matrix consisting of angular cosines is called a

cosine theta, or similarity matrix. The use of the cosine theta matrix for eigen

analysis, rather than PCA based on the covariance matrix, would seem to be the

better choice because of the resulting maximization of back-calculation accuracy.

Eigen analysis of the cosine theta matrix is commonly called Q-rnode Factor

Analysis.

The cosine theta matrix is an. N x N matrix, where N is the number of

samples in the data set. Such a matrix would require large storage space and

long eigen analysis computation times for large data sets. However, it is not

necessary to actually calculate and analyze the cosine theta matrix. Klovan and

inbrie (1971) show that only 77 of the eigen values of the cosine theta matrix

have non-zero values, where mn is the dimensionality of the original feature space.

Furthermore, the non-zero eigenvalues and their associated eigenvectors have

been shown to be identical to those of the m x m cross-product matrix, P.

N

P, X Xi, (VI-- 9)

Thus in this application, P is the mathematical equivalent of the cosine theta

iratrix and J), whose storage requirements are independent of data set size, is

utilizcd ivi place of the cosine theta Tnktri) for Q-mode Factor Analysis in th
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Extended CABFAC computer code (Klov n and Imbrie, 1971; Pull et al., 1981).

Note the similarity betwecn the covariance matrix (E,,. (VI-4)) and the cross-

product matrix (Eq. (VI-9)). The only difference i; the subtraction of the mean

vector in the case of the covariance matrix. For the special case of data sets

with zero means, Principal Components Analysis and Q-mode Factor Analysis

are identical.

Eigen analysis of the cross-product (cosine theta) matrix for data set B

results in the eigenvalues shown in Table VI-2. The coefficients of determination

between original and back-calculated sample vectors are plotted as a function

of number of end members in Figure VI-1. The figure shows that for two end

members, two of the variables (LM4 and LM5) have coefficients of determination

of 0.4073 and 0.0476 compared to coefficients of 0.8 or larger for the other 10

variables. According to the Miesch criterion, this distribution of residual variance

indicates that two end members are not adequate. As we move to three end

members, the coefficients of determination rise to 0.8 or higher for all variables,

thus indicating that three end members are sufficient to linearly model data set

B. This result is consistent with the a priori knowledge of the ice-texture data

set structure. We will therefore proreed into unmixing calculations, considering

data set B to be two-dimensional, i.e., the data will be interpreted as linear

mixtures of three end members. The reduced feature space must therefore be

three-dimensional in order to accommodate a two-dimensional data set that is

constrained to constant sum.

The matrix, T, which transforms the original twelve-dimensional data into

a three-dimensional feature space using Eq. (VI-3), is constructed from the first
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TABLE VI-2. EIGENVALUES OF P FROM DATA SET B

k Eigcnvaiue r Pl

1 40.76 81.52
2 7.10 95.72
3 0.96 97.64
4 0.43 98.49
5 0.30 99.08]

(6 -*N) - 100.00 -
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FIGURE VI-I. Coefficients of determination for the 12 variables of
data set B as a function of number of end members.
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three eigenvectors of P.

0.170 0.355 -0.079
0.398 -0.229 0.028
0.171 0.357 -0.012
0.321 -0.235 0.023
0.303 0.407 -0.096
0.391 -0.249 0.227

T = 0.184 0.368 0.120 (VI- 10)
0.396 -0.197 -0.138
0.143 0.223 0.505
0.292 0.002 -0.737
0.201 0.360 0.086
0.314 -0.240 0.305

C. THE VARIMAX TRANSFORMATION

The CABFAC software performs an additional rotation on the data vec-

tors in the reduced feature space (Klovan and hubrie, 1971). The procedure used

is the well-known varimax method of Kaiser (1958). The varimax rotation is a

rigid, orthogonal rotation that does not change the relationships between sample

vectors. The varimax rotation is applied simply as a matter of convenience in

interpretation. The property of the varimax rotation that is of interest here is

the fact that the rotation tends to place the data cloud in the positive orthant.

This result is highly desirable if one wishes to plot the data for visual analysis

and interpretation as we have done in the following sections.

The result of applying the varimax criterion to the reduced feature ipace

data is a rotation matrix, V, which for the reduced three-dimensional version of

data set B, was found to be [ 0.812 0.573 0.1151
V -0.579 0.815 0.028 j . (VI- 11)

0.078 0.089 -0.993

To transform data directly from the original feature space into the rotated, re-

duced feature space, one can combine transformation matrices resulting fnom
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Factor Analysis and the varimax rotation into a single transformation matrix by

taking the matrix product of T and V.

--0.087 0.378 0.104
0.456 0.061 0.010

--0.083 0.385 0.038
0.398 0.009 0.006

-0.015 0.498 0.137

TV - 0.477 0.057 --0.190 (VI 12)
-0.070 0.413 -0.091

0.423 0.071 0.174
0.013 0.305 -0.482
0.177 0.117 0.763

-0.054 0.414 -0.057

0.416 0.024 -0.276

Equation (VI-12) is the matrix that will be applied to transform data set B into

a three-dimensional feature space for the unmixing analysis that follows.

D. END-MEMBER PROPORTIONS IN DATA SET B

Knowing from factor analysis that data set B can be modeled using three

end members, and having established a matrix to transform the image texture

data into a three-dimensional feature space, we now proceed to the unmixing of

the individual samples. In other words, we calculate the aik coefficients of Eq.

(VI-1).

First it will be instructive to plot data set B as it exists in the reduced fea-

ture space. Several issues crucial to unmixing strategy will become apparent from

a visual inspection of the data. The reduced feature space is three-dimensional,

but the constant-sum constraint causes the data points to fall in a plane rather

than throughout the three-dimensional volume. The planar nature of the data al-

lows for easy plotting in two dimensions, as shown in Figure VI-2, where F, F2 ,

and F3 are the basis vectors of the reduced feature space. The feature space has
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been rotated for plotting so that the F = F2 = 12 line is perpendicular to the

page. The constant-sum plane in Figure VI-2 therefore lies in the plane of the

page.

The plot denotes first-year, second-yer, and multiyear samples with dif-

ferent symbols. Also plotted are the mean -vectors for each of the ice classes.

These means will be assumed to be the appropriate end members for these ini-

tial unmixing calculations. Since we know ice type for each of these samples,

the end-member index, k, can be associated with an ice-type. Therefore, the

end-member notation EFY, EFsy, and t MY will be used. The numerical values

for end members are (i.e., class means) as follows.

EFY = [0.868 0.177 -0.045]

Esy [0.567 0.336 0.097] (VI - 13)

EMY = [0.320 0.648 0.0321

Pairs of end members are connected in Figure VI-2 to indicate areas of

linear unmixing between these pairs. These end-member connecting lines form

a geometric figure (a triangle in this case) that is frequently referred to as the

mixing polytope. Samples falling on an edge of the polytope represent mixtures

of the two end members that form that line segment, with no contribution from

any other end members. Sample points falling within the area of the polytope

represent mixtures of three or more end members. According to linear mixing

theory, samples that fall outside the polytope should not occur because they rep-

resent mixing proportions greater than one or less than zero, which is physically

impossible. However with real data, samples do exist outside the mixing poly-

tope. Samples outside the polytope can result from random noise in the data, or

from improper selection of the number or positions of end members.
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Two important observations are made from Figure VI-2. First, the data

are noisy. The :catter in the sample points belonging to a single ice-type is larger

that the size of the mixing polytope. Second, the polytope is a highly elongated

triangle. The SY end member falls very dose to the midpoint of the FY/MY

mixing line. That is, it will be very difficult to differentiate between SY ice and

an equal mixture of FY and MY. Each of these two factors will contribute to

rather large errors when sample proportions calculated from by unmixing this

data are compared with actual image compositions. Any steps that could be

taken to reduce noise levels in the data, or to expand the polytope to more

closely approximate an equilateral triangle, would improve the unmixing results.

However, before investigating these possibilities, let us calculate the unmixing

accuracies associated with the data Lhown in Figure VI-2.

1. Unmixing Data Set B

The computer code FUZZY QMODEL (Full et al., 1982) is used to calcu-

late mixing proportions. The main function of the QMODEL series of programs

(Klovan and Miesch, 1976; Miesch, 1976, and Full et al., 1981) is to determine

end members by one of several optional methods. Since the present interest is

in using class means as end members, these aspects of QMODEL are not needed

at this time. The background and detailed description of QMODEL are there-

fore deferred until a later section where QMODEL's end-member determination

capabilities are employed. For now it suffices to say that we employed a FUZZY

QMODEL option that allows vertices of the mixing polytope to be supplied as

input to the program. This option utilizes only that portion of QMODEL which

calculates end-member proportions for each sample based on its position with

respect to the supplied polytope.
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The compositions of the samples in data set B axe known. Each sample has

a 1.0 proportion of one ice type and a 0.0 proportion of the other two ice types.

Each sample, therefore, provides three numbers (proportions of FY, SY, and

MY) to indicate unmixing accuracy. Thus the 50 samples in the data set provide

150 measures of accuracy. Looking at the 50 cases, which should have resulted

in proportions of 1.0, QMODEL.-calculated proportions were found to average

0.985 and had a standard deviation of ± 0.643 about that value. QMODEL

calculated a mean proportion value of 0.118 ± 0.615 for the 100 cases where 0.0

was the correct answer. The calculated proportions where 0.0 is the expected

answer are significantly biased toward the positive side. Combining all 150 error

values gives a single rms proportion error of 0.632 for data set B

Th1ese ur-nixing results arc very poor when one considers that by ran-

domly assigning each sample to a class, an rms proportion accuracy of 0.67 can

be achieved. Unmixing of the data in Figure VI-2 based on the polytope shown

is, therefore, only slightly superior to random guessing. However, the situation is

not as grave as it first seems. The global approach to image texture analysis was

undertaken because we concluded intuitively that ice type could not be accurately

determined based on the texture of small neighborhoods. These poor unmixing

results supply experimental confirmation of that initial conclusion. This unmix-

ing analysis has demonstrated that even a 64 x 64 pixel image sample size is not

large enough to generate stable ice-texture statistics. As sample size increases,

the unmixing accuracy can be expected to improve.

)I we assume that the rms error in calculated proportions decreases as

(no. of pixels in sample) l/ 2 , then for a full 512 x 312 image (100 pixels on

each edge of a 512 x 512 image not included for reasons discussed in Section II)

the rms error in calculated proportions would be reduced to 0.101. (The assumed
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dependance of accucacy on sample size is reasonable, since we have shown that the

original variables are normally distributed and since all subsequent operations

leading to composition estimates are linear.) This full image error of 10% in

ice-type compositions is approaching the useful range for many applications.

However, before we are content to lay all of our hopes on increased image size

alone, it will be worthwhile to investigate some possibilities for reducing the noise

in the data and for improving the shape of the mixing polytope. This problem

has consumed a great deal of effort, the details of which add no value to this

dissertation. However, some results will be presented here. The reader should

note that these are summary results and that the problem of reducing noise and

improving polytope shape are not as straightforward as they might appear from

,he followirgi brcf treatment of these topics.

2. Noise Reduction

A significant portion of the random noise in the data seemed to originate

with the LM4 and LM5 variables. This judgment is based on observations sum-

iarized as follows. In Figure 111-12, which shows the Laws' Mask images for

a typical KRMS image of multiyear ice, it does not appear visually that masks

4 and 5 contain much ice-type information. In Table IV-1 both LM4 and LM5

were found to be so devoid of second-year /multiyear discrimination power that

no solution existed for a Bayesian threshold to separate these ice types. These

variables seemed to be useless until it was noted in Section IV that when pairs

of texture mneasuies were considered in a bivariate classifier, the MBR.L-LM5

combination gave better ice-type classification than any other pair of variables.

It therefore seemed wise to include LM4 and LM5 in data set B. Is it a mistake

to include these variables? Can the noise in the data set be reduced and ice-type
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proportion accuracy be improved if these variables are excluded?

The variables LM4 and LM5 were removed from data set B and the data

were reprocessed through the SIFT, the CABFAC, and the QMODEL programs.

Figure VI-3 is a plot of the resulting data set in the reduced feature space. The

noise has been reduced by removal of the two variables in question. The reduced

noise level is especially apparent for first-year ice. Note in Figure VI-3 that the

square symbols are dosely grouped about their mean point, whereas in Figure

VI-2, the square symbols are more widely scattered. The LM4 and LM5 variables

are apparently responsible for the scatter of first-year ice points in Figure VI-2

and for increased noise in the other ice iypes as well. Even though elimination of

these two variables has reduced the noise, the overall result is not desirable. The

third dimension of' the plytupe la6 also been lost. Thr Second-year end member

now lies almost exactly on the first-year/multiyear edge of the polytope. We

have therefore eliminated our ability to distinguish second-year ice in order to

achieve a reduction in noise levels.

This result is not surprising, since the plot of coefficients of determination

in Figure VI-I showed us that LM4 and LM5 were required for a three-end-

member fit to the linear mixing model. We therefore must retain LM4 and LM5,

in spite of their noisy nature, if the ability to unmix KRMS images into three ice

types is to be retained. The rns error in calculated ice-type proportions for the

data shown in Figure VI-3 is 1.916, which is larger than the rns error of 0.632

by a factor of three when LM4 and LM5 are included.

3. Polytope Shape Iniprovement

The other possibility previously mentioned for improving unmixing ac-

curacy is to alter the shape of the mixing polytope from ihat shown in Figure
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V1-2. In other words, can some change be made such that the second-year end

member is not as close to the midpoint of the FY/MY side of the polytope as

is the case in Figure VI-2? One way to do this change is to include the MEAN

variable, along with the 12 texture variables in data set B. To support this idea,

th, author recalls attention to Table IV-1, where MEAN was shown to be a sig-

nificantly superior ice-type classifier to any of the individual texture measures.

Pairwise combinations of MEAN and a texture variable resulted in ice-type das-

sification accuracies as high as 98% compared to 86% for the best combination

of two texture variables in Table IV-2. Therefore, one would expect the addition

of MEAN to the texture data set might improve classification accuracy by im-

proving the shape of the polytope. MEAN had previously been excluded from

consideration because it is not a true texture measure. However, in view of the

relatively poor mixing performance demonstrated by data set B containing tex-

ture information alone, it is appropriate to investigate what performance can be

obtained by mixing MEAN with texture measures.

The ability to incorporate nontexture variables into the analysis is one

advantage of the approach employed here. The treatment of multivariate samples

as vectors in a feature space, combined with global statistics, and the unrmixing

of the global values, is a paradigm that allows complete flexibility in combining

different wriable types into a unified analysis.

Figure VI-4 shows the results of a 13-variable analysis (12 texture mea-

sures plus mean brightness). The mixing polytope in Figure VI-4 is much better

shaped than that in Figure VI-2. Unmixing statistics based on this polytope show

an rmis proportion error of 0.341, which is significantly better than the value of

0.632 obtained from texture measures alone. When extrapolated to a 512 x 312

pixel sample size, the mis error for combined texture and mean brightness is
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0.0055.

4. Combined Noise Reduction and Polytope Improvement

Figure Vrl-3 showed that removing LM4 and LM5 from the analysis re-

moved much of the noise in the data set, but that fact could not be taken advan-

tage of because these two variables were absolutly necessary to form a second-

year end member. Figure VI-4 then showed that using MEAN along with texture

measures enhances the separability of the second-year end member even better

than did LM4 and LM5. Therefore, the question arises: can one utilize MEAN

to provide second-year separability and at the same time remove LM4 and LM5

to reduce noise? Figure VI-5 shows this case. The data plotted in this figure

are derived from 10 texture variables (data set B minus LM4 and LM5) plus

MEAN. The rms error in proportion calculations is 0.334. This error is only

slightly better than the error in Figure VI-4, where LM4 and LM5 are included.

Nevertheless, the error is smaller and the combination of removing LM4 and LM5

while adding MEAN is the best ice-type proportion estimator of those evaluated.

We will therefore proceed from this point with two data sets to be evalu-

ated in parallel. The pure texture case, which includes the 12 texture measures of

data set B, be will be pursued to illustrate what can be done with texture infor-

mation only. Then a second case consisting of 10 texture measures (LM4, LM5

removed) and MEAN will be pursued in parallel to illustrate improved ice-type

classification accuracy through combination of texture with other information.

If the combination of texture and mean intensity is to be carried forward

into further analysis, then it is necessary to confirm that a three-end-member

approximation to the mixing model (Eq. (VI-1)) is still appropriate after having

dropped two texture variables and added the mean intensity. To confirm this fact,
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the coefficients of determination calculated in CABFAC are plotted in Figure VI-

6 for the texture/mean combination case. Here, as in the texture-only case, it

car be seen that an even distribution of residual variance results for three end

members or more. Therefore, the three-end-member solution is still justified for

this combined case.

For sake of completeness the data set, which consists of 10 texture vari-

ables and MEAN, is tabulated in Appendix E and is given the name data set C.

The transformation matrix to go from the data set C eleven-dimensional feature

space to the reduced three- dimensional varimax space is az follows,
-0.091 0.389 -0.085

0.453 0.056 0.086
--0.090 0.394 -0.130

0.397 0.001 0.110
-0.028 0.504 0.034

TV = 0,473 0.058 -0.217 (VI - 14)
-0.086 6.406 --0.086

0.439 0.104 -0.213
-0.064 0.423 -0.260

0.408 0.009 -0.169
0.161 0.279 0.872

The numerical values for end members (i.e., class means) are as follows.

EFY = 1.010 0.175 -0.1861

Esy =[0.532 0.358 0.110] (VI -15)

fy= [0.320 0.677 0.003]

5. Conclusions from Unmixing Pure Samples

Analysis of this set of fifty 64 x 64 pixel sample images of pure ice types

has led to the results summarized below.

* Q-mode Factor Analysis has suggested a three-end- member mixing solution

for this data. Three end members is consistent with the number of con-

ventional ice categories (first-year, second-year, and multiyear) associated
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with this data. This offers encouragement that the results of the unnfixing

mathematics will be easily interpretable in terms common to Arctic science.

* A determination of image composition by ice type based on unmixing has

been demonstrated to be accurate to an rms value of 0.632 using only texture

variables on images of this size. Accuracy has been estimated to be 0.10 for

512 x 312 pixel images.

e Accuracy in determination of image composition has been shown to improve

by a factor of approximately two (0.334) if mean image brightness level is

included along with image texture information (0.055 for 512 x 312 images).
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VII UNMIXING OF SYNTHETIC MIXTURES

A. SYNTHETIC MIXTURE DATA SET

Section IV-D established that many of the 12 image texture measures used

in data sets B and C in preceding sections do not mix linearly, unless the mean

brightness value is the same in each of the ice-type subareas of the mixture. The

first step in the analysis of mixture images is, therefore, to create a mixture data

set that meets this requirement of identical mean intensity in each component of

the mixture. Synthetic mixtures created in this manner are distinctly different

from naturally occurring mixtures where mean intensity varies with ice type.

The more general case of varying means will be treated in Section VIII. Here,

we address the simpler special case represented by these synthetic mixtures. By

working first with synthetic mixtures and then with natural mixtures, it will be

possible to evaluate the magnitude of the increase in proportion measurement

errors resulting from varying means among the components of the mixture.

Forty-two synthetic mixture images, named data set D, have been created

by combining the pure samples of data set A (Figures VI-1 through VI-10) in

various ways. The intensity values in the subimages were offset prior to merging

so that each has a mean value of 128. The mean-adjusted components are then

mosaicked to form 12S x 128 p.xel ;nLlture images. The mixture images, labeled

MX1 through MX42, tu.e showd in Figv.res VII-I thinugh VII-.7. The same 12

texture measures associated with data set B are calculated fur these synthetic

mixture images. Mean inteiiy is lso calculated, but this caicuat! on is per-

formed prior to the umean adjistrnent step so tbzA MEAN has t,e value 'hat

would result from mosaicking lmfal&-,C withcvt an afjustment, The t.!xture and

mean values for the images of dat.a sA ) D vi 4' ,'tiU A. pcadix F.
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MX5 MXG

FIGURE VJI-1. Synthetic miixture images MXI - MXO produced by
merging pure image samnples from data set A.
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FIGURE VII-r. Synthetic mixture images MX- MX1' produced by
merging pure image samples from data set A.
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FIGURE VII-3. Synthetic mixture images MX13 -- MXIB produced by
merging pure image samples from data set A.
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MX.3 MX24

FIGURE VII-4.. Synthetic mixture im'iages MX19 - MXZ4 produced by

merging pure image samples from data set A.
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FIGURE VII-5. Synthetic mixture images MXZ - MX3O produced by
merging pure image samples from data set A.
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FIGURE VII-O. Synthetic mixture images MX31 - MX3O produced by
mnerging pure image samples fromn data set A.
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FIGURE V11-7. Synthetic mixture images MX37 -- MX4o~. produced by
merging pure image samples from data set A.
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B. UNMIXING WITH CLASS MEANS AS END MEMBERS

1. Texture Measures Only

The 12 selected texture measures for the synthetic mixture images were

processed through the SIFT procedure to form data set E given in Appendix

G. The CABFAC program was used to find the transformation matrix, TV,

which would put data set E into a three-dimensional reduced feature space. The

ti'ansformation matrix was found to be

-0.060 0.412 0.093"
0.443 0.023 0.096

-0.047 0.434 0.044
0.428 0.012 -0.005

-0.019 0.41.7 0.229

TV 0.455 0.018 -0.071 (VII- 1)
-0.034 0.386 -0.005

0.408 0.009 0.178
0.100 0.412 -0.41.7
0.085 -0.003 0.820

-0.046 0.384 0.072
0.469 0.034 -0.200 1

The mean vectors calculated from data set A for each ice class were also SIFTed

and transformed into the reduced feature space. Coordinates of the mean vectors,

which will serve as end members for this unmixing step, are given below.

Epy= 0.861 0.089 0.050]

Esy = 0.463 0.278 0.260] (VII -- 2)

EA y = 10.170 0.674 0.157]

Figure VII-8 shows data set E and the class means which have been connected

to form the mixing polytope.

The ice-type compositions based on this polytope, which was input to

QMODEL for use as end members, are given in Table VlI-1. The accuracy (i.e.,
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FIGURE VII-8. Plot of data set E in the reduced feature pace. Solid

dots indicate mean poition for samples belonging

to FY, SY, and MY ice classes in data set A.
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TABLE VII-1. UNMIXING RESULTS FOR DATA SETS E AND F
Class Means from Data Sets B and C as End Members

Sample Known Proportions (%) Set E - Texture Only Set F - Texture + Mean
FY SY MY FY SY MY FY SY MY

MX1 0 0 100 35.46 -98.46 163.01 -1.37 -28.58 129.95
MX2 0 0 100 10.65 -72.15 161.50 -14.91 -23.49 138.40
MX3 0 0 100 6,95 -51.09 144.14 -8.73 -19.24 127.96
MX4 0 100 0 -27.97 122.24 5.73 -16.87 104.20 12.67
MX5 0 100 0 18.55 76.84 4.61 5.88 99.75 -5.63
MX6 0 100 0 41.61 47.95 10.44 6.03 112.40 -18.43
MX7 100 0 0 89.59 13.82 -3.41 97.09 0.80 2.11
MX8 100 0 0 92.22 7.69 0.09 99.11 -5.62 6.51
MX9 100 0 0 116.82 -27.76 10.93 100.24 6.91 -7.15
MX1O 50 25 25 -0.87 102.27 -1.39 45.33 11.42 43.26
MX11 50 25 25 27.49 47.48 25.03 43.41 16.24 40.34
MX12 25 50 25 40.51 62.27 -2.77 28.93 83.43 -12.36
MXL3 25 50 25 4.09 62.18 33.73 9.95 52.24 37.81
MX14 25 25 50 2.38 72.76 24.87 18.23 43.17 38,59
MX15 25 2. 50 2.20 29.49 68.31 6.49 21.31 72.20
MXi6 50 0 50 8.72 85.00 5.02 SGC5 -. 2 52.63
MX17 0 50 50 37.15 -75.91 138.76 -18.91 36.96 81.95
MX 18 50 50 0 73.68 -8,77 35.09 46.80 42.34 10.85
MX19 25 75 0 2.11 113.53 -15.64 21.32 75.67 3.01
MX20 75 25 0 92.12 15.18 -7.31 75.57 43.17 -18.73
MX21 75 0 25 69.94 -7.95 38.01 64.67 2.77 32.56
MX22 25 0 75 11.78 -10.15 98.36 19,38 -28.46 109.08
MX23 0 75 25 20.10 -8.84 88.73 -3.95 39.57 64.38
MX24 0 25 75 -3.75 41.25 62.50 0.92 32.31 66.76
MX25 33 33 33 -28.53 131.82 -3.29 30.90 14.63 54.47
MX26 33 33 33 41.44 -2.8 61.36 20.28 39.39 40.33
MX27 33 33 33 3.72 63.63 32.65 27.32 16.63 56.05
MX28 33 33 33 32.45 7.71 59.84 37.62 -5.74 68.13
MX29 67 33 0 18.34 123.67 42.01 58.41 47.98 -6.39
MX30 33 67 0 7.15 110.08 -17.23 26.78 72.59 0.63
MX31 67 0 33 61.87 30.08 8.05 58.73 37,46 3.81
MX32 33 ( 67 -9.42 88.44 20.98 37.37 -4.67 67.30
MX33 0 67 33 -19.17 117.86 1,31 -13.57 110.83 2.74
MX34 0 33 67 25.67 18.42 55,91 -10.97 94.05 16.92
MX35 100 0 0 64.31 61.06 -25.37 95.28 3.29 1.43
MX36 0 100 0 -26.74 101.15 25.59 -18.82 89.23 29.59
MX37 0 100 0 -11.89 146.86 -34.98 -15.31 157.66 -42.35
MX38 0 100 0 -42.68 132.74 9.94 -31.82 117.37 14.45
MX39 0 100 0 67.82 19.54 12.63 17.30 114.64 -31.95
MX40 0 100 0 -0.80 89.30 11.50 -9.69 109.86 -0.17
MX4I 0 0 100 14.33 -31.69 117.36 -39.95 81.83 58.12
MX42 0 0 100 -42.41 99.39 43.02 8.07 1.38 90.55
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rms difference between known and calculated compositions) for unmixing of data

set E is 0.404. If the value 0.33 is assigned to all calculated proportions, the rms

error values would be 0.347. This case therefore exhibits no skill in determining

image composition by ice type.

The samples of data set E are 128 x 128 pixels in size compared to 64

x 64 for data set B where the unmixing accuracy was calculated to be 0.632.

Based on sample size and random noise cancellation, one would expect the error

in data set E to be one-half of the value for data set B, or 0.316, rather than

the 0.404 measured here. The departure of the accuracy for these larger samples

from the random-noise-based predictions may be due to several factors, including

seam efects in the synthetic mixtures, different relative wcightings of first-year,

second-year, and multiyear ice types in data sets B and E, and the small statistical

sampling represented by 42 data points.

2. Texture Plus MEAN

The 10 texture measures included in data set C were combined with mean

image intensity, MEAN, to conLtruct an 11-variable data set called F (see Ap-

pendix H). The data from the 42 mixture samples and the class means from

data set A were, as before, SIFTed and processed by CABFAC to accomplish a

transformation into a three-dimensional reduced feature space. The calculated
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transformation matrix in this case is

-0.050 0.429 -0.091
0.441 0.032 0.208

-0.037 0.449 -0.184
0.407 0.000 0.182

* 0.002 0.457 0.037
TV 0.454 0.020 -0.078 (VII - 3)

-0.044 0.383 -0.099
0.455 0.063 -0.020

-0.020 0.414 -0.235
* 0.470 0.025 -0.289

-0.007 0.286 0.851

Class mean end members for this case are

EFy = 1 0.922 0.082 -0.003]

lEsy = [ 0.443 0.357 0.200] (VII -- 4)

EMY =[ 0.182 0.788 0.030].

Figure VII-9 is a plot of data set F and the mixing polytope constructed -

from the end members of Eq. (VII-4). Ice-type compositions based on this

polytope and the QMODEL code are given in Table VII-1 beside the the data

0 set E values previously cited. The accuracy of the calculated mixing proportions

is 0.211, which is approximately one-half of the value for texture only in data set

E. We see here the same accuracy relationships between texture only and texture

0 plus mean cases that was observed previously for pure sample data sets B and

C. The accuracy for F is again higher than the value of 0.167, which is predicted

from the results of the smaller sample data set C and random noise cancellation

considerations.

C. UNMIXING WITH EXTREME SAMPLES AS END MEMBERS

Up to this point we have used class means calculated from data set A,

which contains only pure samples, as end members for unmixing calculations.
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FIGURE VII-9. Plot of data set F in the reduced feature space. Solid
dots indicate mean positions for samples belonging
to FY, SY, and MY ice classes in data set A..
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This choice of end members is reasonable, since one could assume that the mean

vector for a number of pure samples of a single ice type would be the "best"

representation of a sample consisting of 100% of that ice type. However, mean

vectors, which intuitively seem appropriate or even optimal as end members,

may not in fact be the best choice when best is judged in terms of the resulting

accuracy of calculated sample proportions. Furthermore, one may not always

have a set of pure samples of known composition from which to calculate means.

Therefore, as a practical matter, alternate techniques for finding end members

may be necessary or even preferable in some cases. Finding end-member vectors

is the major function of QMODEL. Several options are offered by that computer

code.

The simplest approach would be to use the axes of the varimax space as

end member vectors. Certainly this approach satisfies the linear model (Eq. (VI-

1)) exactly, where the Ek vectors are the varimax axes and the aik coefficients are

the coordinates of the data points in varimax space. This approach has several

disadvantages, however. First, the coordinates of the end members in the original

feature space may not always be positive. In other words, end members coincide

with physically unrealizable sample vectors so that a pure sample of a given

end member could never exit. A second disadvantage is that the constraint of

maintaining end members on the edge of the positive orthant is overly restrictive.

Data sets, such as the texture data studied here, where we have a complete data

cloud formed by samples that are known to be mixtures of known end members,

show end member locations (i.e., vertices of the data cloud) which fall well away

from the varimax feature space axes. Clearly, this option is inappropriate for the

present image texture data, so the possibility of F1, F2 , and F3 as end-member

vectors was not pursued in this study.
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We move directly to the approach of Inbrie and Van Andel (1964), which

was tco consider the end members to be unit vectors that pass through the posi-

tions of real sample vectors occupying mutually extreme locations in the reduced

feature space. This approach, of course, assumes that all end members are rep-

resented in the data set. It further assumes that no significant outliers result

from erroneous samples. A set of extremal samples can be determined by an it-

erative method described by Manson and Imbrie (1964). Once the end-member

samples axe identified, the compositions of each sample, aiM, can be derived u,i- I

ing the oblique projection method given by Imbrie (1963). These techniques for

locating and using extreme samples as end members are offered as options in

the QMODEL ,ode. Another option is to find extremal samples in the original

feature space. This second type of extremal end member was not investigated.

End members taken as the most mutually extreme samples in varimax space

are sometime call Imbrie oblique end members. The terminology "imbrie end

members" will be used here.

1. 'Texture Measures Only

Data spt E was unmixed using the three extreme samples (MX9, MX38,

and MX1 for FY, SY, and MY ice, respectively) identified by QMODEL as being

the Imbrie end members. Figure VII-10 shows data set E in reduced feature space

with a polytope formed by connecting these end members. End-member vectors

coinciding with MX9, MX38, and MX1 are given below.

= [0.912 0.093 -0.005]

!sj, [0.290 0.381 0.329] (VII - 5)

EMY = [0.080 0.943 -0.023]

Table VII-2 gives the calculated ice-type proportions for each synthetic mixture

sample. The rrns composition ror in this case was 0.289. This improvement is

154

I



*IMI3RIE EM
AMIXTURES

F2

/ A,

AA

/ N

F ~ ~ ~ 3 - - - - - - - - - - - - - - - - - - -

FIGURE~~~ AA-0 lto aastEi herdcdfauesae oi

dots ~ ~ ~ ~ ~ * iniaeAbieedm m es

7155



TABLE VII-2. UNMIXING RESULTS FOR DATA SETS E AND F
Imbrie End Members

Sample Known Proportions (%) Set E - Texture Only Set F - Texture + Mean
FY SY MY FY SY MY FY SY MY

MX1 0 0 100 0.00 0.00 100.00 11.86 -3.98 92.12
MX2 0 0 100 -15.12 16,01 99.12 0.00 0.00 100.00
MX3 0 0 100 -11.87 24.12 87.75 5.43 1.81 92.76
MX4 0 100 0 10.61 92.21 -2.82 -1.47 70.63 30.84
MX5 0 100 0 40.22 63.52 -3.74 18.47 66.21 15.32
MX6 0 100 0 52.85 47.16 -0.02 18.62 73.18 8.20
MX7 100 0 0 87.48 21.81 -9.29 98.24 3.72 -1.96
MX8 100 0 0 88.00 19.00 -7.00 100.00 0.00 0.00
MX9 100 0 0 100.00 0.00 0.00 101.02 6.81 -7.84
MX1O 50 25 26 29.93 77.67 -7.60 52.88 14.05 33.07
MX11 50 25 25 39.28 51.11 9.61 51.21 16.88 31.91
MXI2 25 50 25 56.40 52.27 -8.67 38.64 55.21 6.14
MX13 25 50 25 21.78 62.82 15.40 21.94 39.64 38.42
MX14 25 25 50 23.55 66.85 9.60 29.19 33.92 36.89
MXI5 25 25 50 9.49 52.44 38.07 1U.5 22.87 58.281
MX 16 50 0 50 33.71 69.33 -3.04 62.77 1.65 35.58
MX17 0 50 50 8.84 7.05 84.11 -3.39 33.70 69.69
MX18 50 50 0 65.11 18.88 16.01 54,23 30.99 14.77
MX19 25 75 0 36.38 80.57 -16.95 31.96 51.59 16.45
MX20 75 25 0 90.32 21.53 -11.85 79.46 2896 -8.41
MX21 75 0 25 61.82 2 0, .25 17.94 69.8 ? 7.61 22,57
MX22 25 0 75 5.87 36.40 5s.73 30.06 -5.71 75.65
MX23 0 75 25 14.19 34.42 51.39 9.73 33.85 56.42
MX24 0 2,5 7r 7.61 58.10 34.29 13.99 29.43 56.58
MX25 33 33 33 13.15 9F.58 -8.73 40.24 17.07 42.69
MX26 33 33 33 36.39 30,25 33.36 30.97 31.66 37.37
MX27 33 33 33 21.89 63.41 14.69 37.11 1.8.49 44.41
MX2B 33 33 33 31 23 36.37 32.40 43.09 5.25 48.66
MX2P 67 33 0 55.06 79.24 -34.29 64,42 33.10 2.48
MX3V 33 67 0 40.07 77.95 .18.01 36.74 49.42 13.84
MX.31 67 0 33 66.36 35.30 -1.67 64.68 27.26 8.05

MX32 33 0 67 17.38 75.52 7.10 45.87 5.86 4S.27
MX33 0 67 33 17.55 88.20 -5.75 1.43 74.01 24.56

MX34 0 33 67 28.23 41.92 29.85 3.68 64.52 31.80
MX35 100 0 0 78.63 44.95 -23.58 98.66 5.25 ' 91
MX36 0 100 0 5,00 84.91 10.19 -3.21 62.54 40.67
1MX37 0 100 0 33.79 95.7 -29.56 0.00 100.00 0.00
MX38 0 100 0 0.00 lOMO 0.00 -14.56 79.20 35.36
MX39 0 100 0 68.64 30.05 1.31 28.51 73.44 -1.95
MX40 0 100 0 25.84 73.31 0.85 4.83 73.14 22.03
MX41 0 0 100 1.37 28.46 70.17 -21.75 60.28 61.46

'X42 0 0 100 -10.46 88.77 21.68 20.19 11.74 68.07
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significant over the rms error of 0.404 that resulted from using mean vectors as

end members.

2. Texture Plus MEAN
S

Data set F was also umnixed using Imbrie end members. In this case

samples MX8, MX37, and MX2 were selected by QMODEL.

*Fy = [0.909 0.105 -0.014]

E~t = [0.462 0.262 0.276] (VII - 6)

E Y = [-0.040 1.059 -0.019]

Figure VII-1 1 i4., a plot of this polytope. Table VII-2 gives the calculated sample

compositions, which result in an nis composition error of 0.165. Again, this

error is sigrificantly smaller than the 0.211 reported when mean vectors were

utilized as enid members.

D. UNMiXING WITH DENEG END MEMBERS

Full et al. (1981) introduce another extremal method for locating end

members. Whereas Irnbrie (1964) used ,xtrernal points as vertices of the mfix-

* ing polytope, Full et al. (1981) developed the DENE( procedure, which uses

extremal samples to position the sides of the polytope rather than the vertices.

The end members axe taken to be the intersections of the various sides thus de-

termined. Under this approach, end members do not coincide with real samples.

The ability tc- select end members well outside of the: ctt cloud is the advantage

(and also the disadvantage, as we will see later) of DENEG. Pure end ,nembers

* do not need to be present in the data set. Sides are 1. jected to intersect at the

presumed locations of rissing end merrbers.
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F'GURE VII-il, Plot of data set F in the reduced feature space. Solid
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15o



0

One requirement of DENEG is that all sides of the polytope must be0

represented. This condition is true if each end member is missing from at least

one sample. Another requirement for DENEG is that an initial polytope be

available which approximately captures the shape of the data cloud. The DENEG

algorithm starts with the initial polytope and iteratively moves the sides outward

until the data cloud is enclosed, or until certain termination conditions axe met.

The steps of the algorithm are given in Full et al. (1981). Full et al (1982)

introduce FUZZY QMODEL, which incorporates clustering techniques from the

field of pattern recognition to establish the polytope for DENEG initialization.

Specifically, Full et al. (1982) used fuzzy dustering (Bezdek, 1981) to generate

"cluster centers" within the data cloud. The cluster centers are taken as the

initial end members, or vertices of the polytope, which DENEG subsequentiy

expands to encompass the data. In this context, the advantageous characteristic

of fuzzy clustering is that the shape of a polygon, formed by connecting tile

cluster centers, often assumes the shape of the dsca cloud, thereby satisfying one

of the DENEG requirements for polytope initialization.S

The reader is again referred to Full et al. (1981) for a complete description

of the steps of the DENEG algorithm. Here, it will suffice to give only brief

* descriptions of the five "tuning" parameters associated with DENEG.

t- The range of negative oblique space coordinate values that is considered

negligible is from 0.0 to t£. Default value for t is -0.05.0!
t.- The value of negative oblique space coordinates beyond which samples

are considered to be "outliers," which will be ignored in DENEG calcu-

lations, Default values for t2 is -0.25.

t3 - All vertex coordinates in the original feature space must be larger than
159
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t 3 . This parameter prohibits construction oi end members that would

be physically unrealistic in the original feature space. Default value for

t3 is -0.05.

4 - If the varimax coordinates of the new end members fall within a dis-

tance, 4, of the end members from the previous iteration, the DENEG

procedure is terminated. The default value for t4 is 0.05.

ts - The im-ximum number of DENEG iterations. The default value for t5

is 10.

1. Texture Measures Only

FUZZY QMODEL was applied to data set E. Default values for ti,t 3 ,t 4 ,

and t. were used, but f2 wa. adjusted to vary the degree to which DENEG

could expand the polytope outward from the fuzzy duster centers. For each

value of t2 the end members were constructed, the unmixing was performed, arid

the rms difference between known and calculated proportions was computed.

Figure VII-12 is a plot of the rms proportion error as a function of t2 (called the

DENEG cut-off value). For reference purposes the rms error for class means and

for imbrie end n- .abers are also plotted in the figure. Note in Figure VII-12

that for t2 = 0 (i.e., fuzzy cluster centers are used as end members), the error

is approximately 0.45. As t2 increases and allows more polytope expansion by

DENEG, the error drops until t2 = 0.4; beyond which no further red'iction in

error occurs. This leveling off beyond 0.4 occurs because at that point, all 42

samples are included in the DENEG calculation so that any increes, in t2 has

no effect. The mixing polytopes for t2 = -0.25 and t3 = -0.4 are shown in

Figures VJI-13 and Figure VII-i4, iespectively. Calculated composition values

for the 12 0.4 case are listed in Table VII-3. Note that in Figure VI- 2
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TABLE VII-3. UNMIXING RESULTS FOR DATA SETS E AND F
DENEG End Members

Sample Known Proportions (%) Set E - Texture Only Set F - Texture + Mean
FY SY MY FY SY MY FY SY MY

MXI 0 0 100 16.88 4.18 78.95 20.46 1.19 78.35
MX2 0 0 100 4.78 15.37 79.85 12.23 4.19 83.58
MX3 0 0 100 6.12 20.59 73.30 16.19 5.66 78.15
MX4 0 100 0 14.02 64.58 21.40 15.01 59.39 25.61
MX5 0 100 0 37.41 44.41 18.17 28.97 56.11 14.92
MX6 0 100 0 47.85 33.09 19.06 29.46 61.56 8.98
MX7 100 0 0 74.30 14.92 10.79 82.42 7.98 9.60
MX8 100 0 0 74.97 13.04 11.99 83.47 5.09 11.44
MX9 100 0 0 85.25 0.00 14.75 84.56 10.43 5.01
MXIO 50 25 25 28.83 54.18 17.00 50.66 15.65 33.69
MX11 50 25 25 38.14 36.26 25.60 49.63 17.85 32.53
MX12 25 50 25 49.71 36.31 13.98 42.75 47.70 9.56
MX13 25 50 25 24.88 44.72 30.40 30.01 35.37 34.62
MX14 25 25 50 25.65 47.31 27.04 34.86 30.97 34.17
MX15 25 25 50 17.62 38.39 44.00 26.89 22.24 50.87
MX16 50 0 50 32.33 48.51 19.16 57.03 6.05 36.92
MX 17 0 50 50 22.15 8.46 69.39 11.64 30.51 57.86
MXI8 50 50 0 59.33 13.92 26.76 52.54 28.90 18.55
MX19 25 75 0 32.92 55.82 11.26 37.79 44.80 11.41
MX20 75 25 0 76.27 14.61 9.11 70.40 27.54 2.06
MX21 75 0 25 56.93 14.95 28.12 62.38 10.77 26.85
MX22 25 0 75 16.90 27.95 55.15 33.33 0.00 66.67
MX23 0 75 25 22.81 26.30 50.89 20.99 30.74 48.27
MX24 0 25 75 15.71 42.20 42.09 23.79 27.32 48.89
MX25 33 33 33 15.39 66.70 17.91 41.82 17.90 40.28
MX26 33 33 33 38.45 22.62 38.94 36.01 29.21 34.78

MX27 33 33 33 24.90 45.10 30.00 39.66 18.98 41.36
MX28 33 33 33 34.25 26.87 38.88 45.34 8.71 45.95
MX29 67 33 0 45.84 54.16 0.00 59.91 30.64 9.45
MX30 33 67 0 35.73 53.94 10.34 41.08 43.15 15.77
MX31 67 0 33 58.38 24.70 16.92 59.79 26,08 14.13
MX32 33 0 67 20.48 53.29 26.23 45.22 9.19 45.59
MX33 0 67 33 19.21 61.64 19,16 17.26 62.05 20.69
MX34 0 33 67 31.58 30.66 37.76 18.35 54.66 27.00
MX35 100 0 0 65.71 30.56 3.73 81.37 9.16 9.47
MX36 0 100 0 11.00 59.93 29.07 13.33 53.05 33.62
MX37 0 100 0 29.48 65.96 4.56 17.65 82.35 0.00
MX38 0 100 0 5.91 70.16 23.92 6.15 65.96 27.89
MX39 0 100 0 60.51 21.14 18.35 36.62 61.85 1.63
MX40 0 100 0 26.51 51.47 22.02 19.63 61.40 18.97
MX41 0 0 100 14.69 22.90 62.41 0.00 51.12 48.88
MX42 0 0 100 0.00 63.19 33.81 27.25 13.55 59.21
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the DENEG error line goes below the rms error level for Imbrie end members.

DENEG-derived end members are, therefore, slightly superior to the others for

this particular set of synthetic mixture image texture data. End members for

t2 = -0.4 for the texture only case are

EFY = [1.065 -0.069 0.004]

[sy=[0.343 0.223 0.434] (VII -- 7)

EMY = f-0.210 1.279 -0.069 1

2. Texture Plus MEAN

Data set F was also processed by FUZZY QMODEL using a range of

values for the DENEG parameter t2. The rms error values for this data set

are 1rlotted in Figure VII-15. As previously in Figure VII-12, the error values

in Figure VII-15 decrease as the polytope is expanded. When all samples are

included, the error value becomes fixed. The difference between this case and

the texture-only case is that for texture plus MEAN, the DENEG error never

reaches the value for Imbrie end members. The polytope calculated by DENEG

for t2 = 0.325 is shown in Figure VII-16. The reason for the poor performance

of DENEG as compared to extreme samples is apparent from Figure VII-16.

DENEG has projected an end member out of the positive orthant by a significant

distance. The possibility of this happening is one disadvantage of DENEG.

Polytope sides based on extreme samples may intersect at strange places. Even

more extreme examples of this problem will be seen later.

The end-member vectors from DENEG with t2 = 0.325 for the texture
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plus mean case are

t FY = [1.077 -0.039 -0.038]

[sy = 0.360 0.311 0.3281 (VL - 8)

- My = [-0.219 1.336 0.045]

Calculated proportion values based on these end members are given in the last

three columns of Table VII-3.

E. SUMMARY OF ANALYSIS OF SYNTHETIC MIXTURES

Unmixing calculations have been performed on the synthetic mixture im-

ages using end members generated by several methods. Based on texture meas-

uxes only, image composition was calculated to an rms proportion error of 0.254

in t h,e best case. The best case for texture plus MEAN was an rms error of

0.165. These errors extrapolate to 0.08 and 0.05, respectively, for full-frame

KRMS images. The analysis of synthetic mixtures has suggested that natural

KRMS images can be unmixed with useful accuracy, provided the problem of un-

equal mean image intensities for different ice classes can be shown to be solved

satisfactorily. Section VIII will examine the unequal means problem.

This synthetic data set revealed several things about selection of end

members. First, class means as end members have been shown to be the least

suitable in terns of accuracy of the resulting calculated proportions. This result

is somewhat surprising, since the mean vector for a given class of ice should

be the best possible estimate of what a pure sample would look like in feature

space. The other two methods of obtaining end members - one using extrenial

samples as end members, the other using extremal samples to define polytope

sides - performed better than the class means as end members. The performance

of these extremal methods is also surprising because of the high noise levels in
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the data. One would expect that relativcly noise-free data would be required to

obtain useful results from methods that key on extreme samples.

DENEG (the side extreme method) and Imbries end .members (the vertex

extreme method) gave comparable results., The relative performance of these two

changed. with data set. So far in this study there seems to be no dearly superior

method. Vertex extremes appear to be more stable, having less chance of wildly

divergent solutions. DENEG, however, can) excel if the data doud supports an

orderly corvergence to a reasonable solution, which is not guaranteed. The rule-

of-thumb the author has adopted at this point is to use Imbries end members

if all end members are known to be represented in the data set. If not all end

members are present, DENEG is the only choice, but one should be aware of the

possibility that unsatisfactory end members are possible; caution is advised.
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VIII. UNMIXING WITH VARIABLE MEANS

In Section III several desirable characteristics of texture measure , were

identified. One of the most important characteristics to linear unmixing is obvi-

ously a linear behavior in the formation of mixtures. In Section IV we found that

only 6 of the 25 candidate texture measures mix linearly. We found further that

linear behavior could be attributed to 12 texture measures if the mean intensity

levels in the components of the mixtures were identical. Our synthetic mixtures,

therefore, were forced to uniform mean intensities so that we could take full ad-

vantage of all 12 texture measures. Now as we look toward natural mixtures

that will not have invariant mean intensities for all ice types, we must reduce

the suite of texture measures from 12 to 6, and also begin to analyze mixtures

that do not have equal means. This section addresses these questions. First,

the synthetic mixtures from the previous section will be unmixed using only the

6 more robust measures that handle mean shifts. The objective is to see how

much ice-type discrimination power is lost by discarding half of the variables pre-

viously incorporated in the analysis. Second, the 42 synthetic mixtures will be

recreated without any mean adjustment, ?nd the analysis repeated to measure

the degradation in unmixing performance that might result from nonadjusted

means. If both the reduction in variables and introduction of mean shifts into

the synthetic mixture have relatively minor impact on unmnixing accuracy, then

we will be ready to go on to natural mixtures in Section IX.

A. REDUCTION TO SIX VARIABLES

Section IV identified MEAN, H OM3, I1OM15, LM2, LM3, LM4, and LM5

(6 texture variables plus MEAN) as the only variables among the 25 evaluated

that would nix linearly in the most general case, where various parts of the ix-
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ture would have textures superimposed on varying overall background brightness

levels, The synthetic mixtures of data set D were reanalyzed using only these

variables. The 6 texture variables were extracted from D and SIFTed to form

data set G listed in Appendix I. The four texture measures HOM3, IHOM15,

LM2, and LM3 were combined with MEAN to form the five-dimensional SIFTed

data set, called H, listed in Appendix .

1. Texture Measures Only

The six-dimensional data set G was processed by CABFAC in the same

manner described in association with previous data, sets. The resulting transfor-

mation matrix that will put C into a three-dimensional, reduced varimax feature

space is
0.565 -0. 04 0.154

-0.266 0.578 0.498
0.540 -0.036 0.255

TV -0.120 0.571 0.096
0.239 -0.080 0.654

L 0,497 0.575 ---0.476

Figure VIII-1 is a plot of G in the reduced feature space. Figure VIII-2 shows sev-

eral unixing polytopes calculated by QMODEL. The end-member coordinates

for the polytopes shown in Figure VIII-2 are given below.

Class means from Section VI:

iFY = [0.634 0.133 0.233]

Esy =[0.350 0.201 0.4501. (ViII-2)

Em = [0.148 0.579 0.2731

Inbrie end members:

Ep - [0.664 0.1.54 0.182]

/isy = [0.288 0.176 0.5361. (VIII -3)

LEMY = [0-093 0.855 0.051]
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FIGURE VIII-2. Plots of data set G in the reduced feature space with
various superimposed mixing polytopes.
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DENEG end members with t2 = -0.2:

EFY [0.921 0.126 0.368]

Esy [0.516 0.332 0.790]. (VIII -- 4)

EMy=[0.047 0.991 0.129]

DENEG end members with t2  -0.4:

EFy = [0.966 -0.001 0.260]

I sy [0.424 0.101 0.900] . (VIII - 5)

EMY = [-0.135 0.991 -0.018]

Note that the DENEG end members with t 2 = -0.4 give the best unmixing

accuracy of 0.268, which compares favorably with the best texture-only error

value of 0.254 from Section VII, where 12 rather than 6 texture variables were

included. We conclude that the texture information lost by eliminating 6 texture

variables is not significant.

2. Texture Plus MEAN

The five-dimensional texture plus MEAN data set was also processed by

CABFAC to produce the reduced feature space data points shown in Figure

VIII-3. The transformation to reduced varimax feature space in this case is

0.450 -0.106 0.539
-0.096 0.726 0.278

TV 0.520 -0.035 0.471 (VIII - 6)
-0.135 0.606 0.109
L0.706 0.308 -0.632

Figure VIII..4 shows several unmixing polytopes calculated by QMODEL for data

set H. The end-member coordinates for the polytopes shown are as follows.

Class means from Section VI:

EFY [0.731 0.103 0.166]

Esy [0.311 0.271 0.418]. (Vi - 7)

EMy = [0.171 0.643 0.186]
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Imbrie end members:

EFY =[0.725 0,126 0.1501

Jtsy = [0.360 0.167 0.473]. (VIII - 8)

EMY 10.025 0.877 0.099]

DENEG end members with i2 =-0.19:

Epy [ 0.973 0.051 0.2241

Esy [0.574 0.478 0.6651. (VIII -9)

EfMY [0.034 0.981 0.1.94]

DENEG end members with t 2  -0.3:

FY = [0.841 0.256 -0.476]

s [u.676 -0.045 0.7361. II 1

E9MY = [-0.192 0.952 0.240]

Note that the Imbrie end members give best unmixing accuracy of 0.1.57, which

is slightly better than the best texture plus MEAN error value of 0,165 from

Section VII, where 10 texture measures plus MEAN were included, Again the

conclusion is that elimination of 6 texture measures does not significantly impact

the accuracy of calculated image proportions.

Note in Figure VIII-4, when t2 = -0.3, the DENEG solution loses the

initial polytope shape and pushes an end member off the edge of the plot. This

possibility of producing end members well away from the data cloud requires

caution in using DENEG to select end members.

B. MIXTURES WITH MEAN SHIFTS

Synthetic mixture images MX1 through MX42, shown in Figures VII-1

through VII-7, were recreated by mosaicking pure samples as before, but this

177



time the adjustment of mean intensity to a value of 128 prior to mosaicking

was not performed. These synthetic mixtures with variable mean intensities are

called NX1 throuigh NX42. Figure VIII-5 is a representative example of the NX

series of mixture samples. The rest of the NX images axe not shown here, since

they are sinilar to Figures VI-1 through VII-7, except that the background

brightness level is different for each component of the mixture. The 6 texture

values calculated for the NX series of synthetic images are listed in Appendix

K and are given the name data set I. The MEAN variable assumes the same

value for the NX series of mixtures as it did in the MX series, since the previous

MEAN values were calculated without the mean adjustment being performed. A

SIFTed version of I is called ,] and is listed in Appendix L. Likewise, a SIFTed

data set containing 1OM3, HOM15, LM2, LM3, and MFAN is called K and is

listed in Appendix M.

Table K-1 contains values of texture measures from synthetic mixtures

with variable means. If Table K-1 is compared with the comparable values in

Table F-i, where mean intensities were normalized, then one will find little change

in the numer; -al values of the texture measures. Since the values of the raw data

are only slightly altered by introducing shifts in the mean image intensity for

each constituent of the mixture, then it is perhaps obvious that the NX series of

synthetic mixtures can be unmixed with approximately the same accuracy as the

MX mixtures. However, for the sake of completeness, limited unmixing results

will be presented for the NX series of mixtures with variable means.

1. Texture Measures Only

Figure VIII-6 is a plot of data set J in the reduced varimax space. Imbrie

end members and DENEG end members were applied to the unmixing of these
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FIGURE ViII-5. Typical synthetic mixture image (NXZ) without mean
intensity level adjusted prior to mosaicking.
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data and resulted in the polytopes and mis proportion errors shown in Figure

VII-7. The raw data to reduced feature space transformation matrix for data

set J is

0.606 -0.021 0.127
-0.290 0.589 0.471

T 0.485 -0.067 0.342
-0.094 0.588 0.53 11)

0.185 -0.069 0.674
L 0.521 0.545 -0.434

The end members plotted in Figure VIII-7 are given below.

Imbrie end members:

LFY = [0.890 0.386 0.226]

EPsy = [0.378 0.296 0.873]. (V III - 12)

Ey = [0.116 0.991 0.0601

DENEG end members with t2 = -0.38:

Fy = [0.916 0.003 0.402]

sy = [0.429 0.235 0.873] (VIII - 13)

tMI = -0.025 0.996 0.083]

A DENEG polytope that encompasses the entire data cloud could not be achieved

in this case. The DENEG iterative algorithm did not converge to a reasonable

polytope when t2 was large enough to include all data points. Imbrie end mem-

*O bers, therefore, are the only valid comparison between these data and the cor-

responding data based on mixtures with uniform mean brightness. For varying

means the unmixing accuracy is 0.296 compared to 0.275 (Figure VIlI-2) for

*O mixtures with preadjusted means. The difference between these two accuracy

figures is small as expected from the observed similarity in raw data.
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2. Texture Plus MEAN

Figure VI1-8 is a plot of data set K. Again, Imbrie end members and

DENEG end members are applied and the resulting polytopes are shown in

Figure VIII-9. The transformation matrix from CABFAC for data set K is

0.901 0.046 0.0901
-0.033 0.698 -0.403

T V = 0.421 0.083 -0.257 (V III - 14)

-0.096 0.548 -0.163
-0.002 0.452 0.858 J

End members from QMODEL for this case are as follows.

Jnbrie end members:

EFY = [0.992 0.109 -0.050]

Esy = [0.691 0.659 0.283 . (VIII - 15)

EMY = [-0.061 0.995 -".020]

DENEG end members with t2 = -0.3:

E9FY = (0.997 0.064 -0.053]

E-,sy = [0.668 0.422 0.61.4] (V III -- 16)

EMY = [-0.138 0.988 -0.076]

Again, attempts at DENEG end members that encompassed all samples did not

end in convergence, so only Inibrie unrrixing is compared with previous results.

Here when texture and MEAN are considered jointly and background intensity

is allowed to vary in the mosaick, the Imbrie unmixing accuracy is 0.164, which

is once again very close to the 0.157 value (Figure VIIi-4) that resulted when

means were preadjusted. Our conclusion is that there it no significant loss in

accuracy of the calculated proportions when the mean intensity is allowed to

vary. The objective of this section is therefore satisfied.
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3. Unmixing with All Variables of Data Set I

Although accuracy values do not indicate any problem with data set K,

the shape of the data cloud in that case is troublesome. Note the Imbrie polytope

in Figure VIII-9. The triangle is relatively collapsed so that the second-year end

member is approaching the midpoint of the first-year/rmultiyear mixing line. This

same problem (but more severe) was encountered in Section VI (see Figure VI-

3). In the previous encounter we found that as long as either the LM4 and

LM5 pair or MEAN was included in the data set, the polytope would expand

to a more acceptable shape. In Figure VIII-7, when LM4 and LM5 are present,

a nearly equilateral polytope results when Imbrie end members are connected.

Figure VIII-9 does have MEAN included which has previously been sufficient

for a solid three-end-member polytope, but it apparently is not sufficient in this

case. It seems appropriate in view of this problem to include LM4, LM5, and

MEAN in the same data set to see if an improved polytope can be obtained. This

combination of variables was analyzed and discarded in Section VI because of the

noisy nature of LM4 and LM5. However, since we have gone to larger images,

the noise levels in the data are reduced, so another look at using all variables is

in order.

Data set L is a SIFTed version of data set I with all 7 variables included.

These data are listed in Table N-1 in Appendix N. Figure VIII-10 is a plot of the

data. The data cloud in this figure tends to be more two-dimensional, and Figure

VIII-11 shows an. expanded polytope for the Imbrie erd-member case. However,

the accuracy is worse (0.231) for this expanded polytope than for the collap3ed

case in Figure VIII-9 (0.164). Apparently, the degradation from noise in LM4

and LM5 exceeds the benefits resulting from an improved polytope shape.
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Many texture investigators (e.g., Laws, 1980) stop at this point, having

demonstrated their algorithms on synthetic mixtures of image texture. Indeed,

the primary objective of this study has been realized. The global approach to im-

age texture has been developed and has been successfully applied to test imagery.

However, analysis of complex natural texture composites, such as those encoun-

tered in remote sensing, is not an easy problem. Many techniques demonstrated

on synthetic textures cannot be readily applied to practical applications. The

complex issues of practical image texture analysis cannot be addressed within

the scope of this work. Even given the time, the present KRMS data set would

not be adequate to completely illustrate the global approach to analysis of nat-

ural mixtures. However, we do want to at least introduce the natural mixture

problem, do some very Jimited work with this type of mixture, and point the

way toward further work required to progress in this area. Section IX covers this

topic.
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IX. NATURAL MIXTURES

A. SIMPLE MIXTURES

When 512 x 312 pixel full frame KRMS images are condisered, the types

of mixtures available in this data set will not support a complete global texture

analysis. There axe no images in the data set that consist of only a single ice

type. Therefore, we have no way to locate Imbrie end members for unmixing

via extreme samples. Likewise, there are no images totally void of first-year ice.

DENEG end members, therefore, cannot be defined using edge-extreme methods.

However, four images containing simple mixtures of first-year and multiyear ice

are available. Some insight into natural mixtures is available by analysis of these

four images shown in Figures IX-1 through IX-4.

1. Building the Polytope from Large Synthetic Mixtures

One possibility to explore is to fill in the data set with some large synthetic

mixtures. These mixtures could be used to fill in the holes in the polytope that

cannot be defined from a limited supply of natural mixtures. These images

should be 512 x 312 pixels like the natural mixtures to reduce noise levels, since

the polytope will be based on so few points. Six such large synthetic mixtures,

labeled BX5 through BX10, were constructed from the synthetic mixtures of

Section VIII. hill 512 x 312 mosaics were not possible with the data at hand,

but large mosaics ranging from 256 x 256 up to 512 x 256 pixels were constructed

for each pure ice type and for 50-50 mixtures of FY/SY, FY/MY, and SY/MY.

The six large synthetic mixtures, therefore, defined all three vertices and all

three edges of the three-end-member polytope. The hope was to superimpose

the polytope thus defined over the natural mixture images and calculate ice-type

proportions on that basis. Figure IX-5 is the large multiyear mosaick, which
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FIGURE IX-1. KRMS inage DX containing a natural mixture or FY (90%)
and MY Y(10%)lice. linage size is 312 samples by 512 lines.
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FIGURE IX-2. KRMS image BX2 containing a natural mixture of FY (40%)
and MY (60%) ice. Image size is 312 samples by 495 lines.
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FIGURE IX-3. KRMS image BX3 containing a natural mn xture of FY (69%)
and MY (3i%) ice. Image size is 312 sarnp~es by 512 lines.
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FIGURE IX-4. KRMS image BX4 containing a natural mixture of FY (00%)
and MY (40%) ice. Image size is 312 samples by 512- lines.

194



__ S

moo

FIGURE IX-5. Synthetic KRMS mixture image consisting entirely

of MY ice. Image size is 256 samples by 384 lines.

S

19



is shown as a representative example of images BX5 through BX10. 7'Lbj- 0-1

in Appendix 0 gives the calculated values of texture measures for these large

images, which have named data set M.

It is most informative here to first consider texture variables HOM3,

HOM15, LM2, and LM3, plus MEAN. These five variables have been extracted

from Table 0-1, SIFTed, and placed in Table P-1 (Appendix P) as data set N.

CABFAC was used as before to transform data set N into a three-dimensional

feature space. Figure IX-6 is a plot of data set N in this reduced feature space. 1

the figure the polytope constructed from the large synthetic mixtures is shown.

The first observation is that the natural mixtures (triangular points in Figure

IX-6) do not fall on the FY/MY miring line as expected. They tend to fall in a

line (see visual linear fit represented by the dotted line), but the mixing line for

Iaur IL- Wxu, ib ,,u .. atcly paxallel to, but offset from, the FY/NIY edge

of the polytope.

An offset is not the only difference illustrated in Figure IX-6. The four

natural-rixture points span multiyear concentrations of 10% to 60% or a range

of 50%. The FY/MY edge of the polytope spans a range of 100% in multiyear

concentration, yet its distance on the plot is approximately the same as for a

50% range of natural mixtures. Therefore, a scale, as well as an offset difference,

seems to exist between texture measures calculated from synthetic and natural

mixtures, so the idea of unrmixing natural mixtures using a synthetic mixture

polytope must be abandoned.

It is interesting to note how precisely positioned the six synthetic points

are with respect to the polytope. With image sizes as large as these, the excessive

noise we saw initially when working with 64 x 64 pixel images has been virtually
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FIGURE IX-6. Plots of data set N In the reduced feature space.
Triangles rep rennt natural FY/MY mixture images.
Crossed circles represent large synthetic mix-
tures. Polytope is constructed by connecting large

synthetic mixtures of a single ice type.
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eliminated. The polytope has been formed by connecting the pure ice type

vertices exactly. A comparison of the edge puints with their expected positions

midway between vertices will give an indication of the unmiixing accuracy that

can be achieved with these larger images, which, on the average, were equivalent

to 300 x 300 pixels. In Figure IX-6 the calculated proportions agreed with the

known proportions of the edge poi-ts to an rms error of 0.039.

2. Two-End-Member Analysis of the Natural Mixtures

Since the natural mixtures BX1 through BX4 do fall in a line, one might

get some estimate of possible unixing accuracy by attempting unmixing cal-

culations along that line. We have no end members for the dotted mixing fine

shown in Figure IX-6. However, one can determine if the relative positions along

that line are related in a consistent manner to first-year/multiyear ice propor-

tions. To determine whether consistency is present, each sample's position was

projected onto the dotted mixing line, and that position was measured relative

to some reference point on the line. For convenience, the lower sample in Figure

IX-6 was chosen as the reference point. Measured distances for the four points

were 0.0, 0.87, 2.00, and 2.32 inches, which corresponded to multiyear propor-

tions of 0.10, 0.31, 0.40, and 0.60. A linear least-squares curve fit was applied to

these four data points, resulting in the equation.

MY proportion = (distance x 0.1857) + 0.1116. (IX - 1)

This equation, being a best fit relationship of mixing line distance to multiyear

proportion, can be used to estimate proportions based on distance. The calcu-

lated proportions from Eq. (IX-1) for the four samples in question were 0.112,

0.273, 0.483, and 0.542 leading to an nas proportion error of 0.054 for unmlixing
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of these four samples. It would be wrong to place too much emphasis on accuracy

values based on four points. However, it is interesting to note that this value

is close to the accuracy value of 0.05, which would be predicted for these large

images based on the 128 x 128 synthetic mixtures in Section VIII, plus sample

size considerations. We therefore have some evidence that these simple natural

mixtures are not significantly more difficult to unaix than were the synthetic

mixtures.

The same analysis of data set M was attempted using texture measures

only. The six texture measures were SIFTed to form data set 0 which is tabulated

in Appendix Q. Figure LX-7 is a plot of that data. Again, as in Figure IX-6, a

polytope based on large synthetic mixtures BX5 through BX10 is plotted, as well

as a visual fit of a mixing line through the natural samples. In this texture-only

care, the natural mixing line and the FY/MY side of the polytope are very close.

The offset observed in Figure IX-6 is not present here. However, the scaling

discrepancy remains. The polytope spans a 100% range of concentrations in

approximately the same distance as is covered by a 50% concentration range in

natural mixtures.

Unmixing of the natural mixture samples was attempted again using pro-

cedures previously described. In Figure IX-7 the measured distances were 0.0,

0.79, 1.86, and 2.29 inches. These measurements led to the following least-squares

predictor of multiyear proportions.

MY proportion = (distance x 0.1926) + 0.1146. (IX - 2)

Resulting unmixed proportions of multiyear ice were (via Eq. (IV-.2)) 0.115,

0.267, 0.473, and 0.556, leading to art rms proportion error of 0.048. This unmix-

ing accuracy is well below the value of 0.095, which would be predicted for these
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FIGURE IX-7. Plots of data set. 0 in the reduced feature space.
Trianglesa rep resent natural FY/MY mixture images.
Crossed circles represent large synthetic mix--
tures. Polytope is constructed by connecting large
synthetic mixtures of a single ice type.
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images based on texture-only results in Section VIII. Texture-only accuracy here

is as good as the texture plus MEAN case. This equality of the two cases is

inconsistent with results in previous chapters where texture only was worse than

texture plus MEAN. However, little significance rests with numbers based on

four samples. This limited study of simple natural textures indicates that simple

natural textures can possibly be as easily and accurately unmixed as synthetic

mixtures.

We can look again at how well the polytope sides in Figure IX-7 match

the 50-50 synthetic mixture samples that should fall at the midpoints of the

sides. For texture only ill Figure IX-7, the calculated proportions agreed with

the known proportions of the edge points to an rms error of 0.074.

3. Unmixing Accuracy as a Function of Image Size

In Section VI the assumption was made that unmixing accuracy for global

texture analysis would vary as 1 over the square-root of the number of pixels in

the image, or in other words, as 1 over the dimension of a single side of a square

image. That assumption was put forward based on the facts that all variables

were normal and that all unmixing procedures are linear. At this point we have

data available to confirm tWis assumption. We have error values for 64 x 64

images from Section VI, 128 x 128 images from Sections VII and VIII, 512 x

312 natural inages, and 256 x 384 synthetic images in this section. If we ta!:e

the best texture plus MEAN error values obtained for each image size (whether

Imbrie, DENEG, or class mean end members) and plot these accuracy values as

a function of image size, then the plot shown in Figure IX-8 is obtained. For

comparisonL, a 1 over sample size curve is shown as a dashed line. A perfect

match with the dashed curve would not be expected, since some of the square
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points are for pure samples while others are for mixtures, and some mixtures

are synthetic while others are natural. Also the relative representations of each

texture type is different for each data set. In spite of these differences, the points

fall close enough to a S' behavior, where S is the length of the image side,

that this assumed relationship to image size can be considered experimentally

confirmed.

B. COMPLEX MIXTURES

Texture types in natural images will not always occupy dearly defined

areas with simple boundaries, as was the case in Figures IX-1 through IX-4.

Figure IX-9 is art example of such a mixture. Note the two boxes drawn on the

figure. Both boxes include multiyear ice. However, the upper box is positioned

on e large solid multiyear floe, while the lower box contains numerous small

p>.eces of multiyear ice. Clearly the fragmented nature of the ice in the lower box

imparts an entirely different textural appearance than is present in the upper box,

even though both axe filled with multiyear ice. When the ice mixtures become

complex through fractuing or through formation of rubble fields consisting of

small chunks of assorted ice types, ice classification based on image texture would

be expected to encounter problems.

These problems are not believed to be insurmountable. One solution is

tggeAted and illustrated here. The proposal is to prepiocess the image to iden-

tiiy areas of complex textures. These areas cart then be replaced by imbedding

"blotches" of uniform gray to replace the complex areas. When the unmnixing

is performed, these uniform areas will fall out of the analysis as an additional

end member. That is, rather than three end members representing first-year,

Ssecond-year, and multiyear ice, CABFAC would indicate a four-dimensional fea-
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FIGURE IX-9. Complex KRMS natural naixture of FY and MY ice.
Boxes denote a solid MY flow and MY rubble.
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ture space where three of the end members represent ice types and the fourth end

member, which could be called "unclassifiable" would represent the previously

masked areas of complex structure.

An alternate approach would be to just leave the complex areas as they are

and let the unrnixing procedure assign end members to these directly. The author

does not believe that this approach would be satisfactory. The wide variety of

types of complex texture would require numerous end members which would lead

to a difficult interpretation of the results. It seems preferable to preprocess and

join all complex, unclassifiable areas into a single texture (uniform gray) and

then proceed with unxmixing.

To show that such a preprocessing step might be feasible, the following

steps were applied to Figure IX-9. First, a duster shade edge detector (Holyer

and Peckinpaugh, 1989) was applied to the image with an edge threshold that

detected fractures and rubble but did not have the sensitivity to detect texture

within floes. (This new edge detector was an outgrowth of the GLC matrix-based

texture analyses described in Section III). Edges thus detected were dilated for

several iterations to make the edge lines wider. The dilation process nearly

filled in complex areas with high edge density such as a nibble field. All image

pixels under the dilated edge mask are set to a uniform mid-range grey value (in

this case, 128). Figure IX-10 shows the resulting irage. Rubble areas have been

elintinated ad solid floes remain. An unmixing analysis of this imaage should give

accurate proportions for the first-year ice and the remaining first-year floes, plus

one more proportion for the masked areas of unmanageable complexity. What ha5

been shown here as an example is a simple preprocessing step. Certainly better

methods for masking complex ice areas could be developed. Perhaps something

as simple as variance in a local neighborhood could be used to delineate complex
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FIGURE IX-1O. Natural mixture irmage of Figure IX-9 with complex

rubble areas covered with a uniform gray level.
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textural areas.
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X. CONCLUSIONS AND RECOMMEND-4TIONS

Conclusions resulting from this study will be divided into two categories.

The first deals with the global texture analysis paradigm, which was the major

thrust of this work. These conclusions cover matters of broad applicability to the

field of image processing. The second category deals with information learned

about sea ice as a result of using imagery of that type as test data.

A. THE GLOBAL TEXTURE ANALYSIS PARADIGM

* The global approach to texture analysis has been developed and applied to

a test data set with sufficiently promising results that it can be concluded

that the approach may have merit for many image texture problems.

* Both mandatory and desirable characteristics of texture measures were enu-

merated. Of 25 candidate texture measures evaluated, none met all of the

desirable and mandatory characteristics, and only two - local homogeneity

and Laws' energy masks - possessed the mandatory characteristics, which

included correlation with ice type and linear behavior under formation of

mixtures. Here, of course, the key item is the linear mixing property. In-

vestigation of additional texture measures that exhibit this characteristic

would support further exploitation of the global texture analysis approach.

* The SIFT procedure was developed and applied here to deal with the

nonconstant-sum nature of image texture variables. Since this work was

performed, a variable-sum version of CABFAC and QMODEL is reportedly

available (Full, 1988). The analysis described here should be repeated using

these new programs. If the SIFT used here resulted in significant loss of

ice-type information, the repeated analysis with the new code would give

better results, indicating even more promise for the global techniques.
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* The global approach should be applied to other texture data sets to see if it

does indeed have broad applicability.

* Firther study should be initiated to deal with the problem of complexity

occurring in natural images.

* Failure to solve the complexity problem does riot eliminate the global method

from practical application. There may be certain applications, industrial

inspection and control, for example, where the scenes are always simple

mixtures and this technique is applicable without presimplification.

* Global uninixing of image texture is inexorably linked to a trade-off. Pro-

portion accuracy can be exchanged for positional uncertainty. If the global

area is large, propnrtions can be extracted quite accurately, but one does

not know where within the global area the particular texture in question

is located. Conversely, as the global area is made smaller to pinpoint the

location of a feature, the proportion filled by that texture feature can be

measured with less certainty. This situation suggests that a pyramid ap-

proach could be advantageously applied. Large areas could be analyzed for

maximum accuracy followed by analysis of progressively smaller areas in

selected parts of the image where it is judged to be advantageous based on

criteria that would be unique to a given application.

B. SEA ICE SCIENCE

* Proportions of first-year, second-year, and multiyear ice types in samples

extracted from KRMS images can be calculated with useful accuracy using

linear unmixing of globally determined texture measures.

* Eppler et al. (1984) studied classification of ice types in the same KRMS
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data set. Their classification work involved thresholding on imege bright-

ness. They concluded that brightness temperature thresholding alone was

not adequate for classification of ice types. The recommendation in that

report was that image texture be included, and provided the stimulus for

the present study. We demonstrated here that texture can lead to calcula-

tion of accurate (accuracy depending on image size) ice-type proportions.

Furthermore, the accuracy has been shown to improve by an approximate

factor of two when mean brightness levels are added to texture data. Un-

fortunately, Eppler et al. (1984) did riot give any quantitative estimates of

image composition accuracies resulting from the thresholding method, so

that direct comparison could be made with the present results.

* The proportion errors as a L'utdin of image sizc thal have been derived here

indicate what order of spatial scales are required to adequately characterize

ice types. The 312 x 512 pixel images that resulted in proportion errors of

approximately 0.05 represent 6.4 km2 of ice surface.

* The most critical hurdle to practical application of the global technique to

ice analysis is believed to be the development of a pr.±processing step that

will identify and simplify areas of complex textural structure.

* Assuming the above can be accomplished, this texture analysis scheme should

be applied to another KRMS data set, where adequate representation of the

various ice types will permit complete unmrixing using only natural images.

* The real future of ice-texture analysis ';es with SAR rather than with passive

microwave sensors. The KRMS is a research tool, but operationally, the

SAR is the sensor of the future. The ERS.I satellite will hay, a SAR in

space in 1991 and for the forseeable future thereafter. NASA is establishing
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a receiving facility in i.airbanks, Alaska, to receive that data over a large

portion of the Arctic. The Navy Polar Oceanography Center in Suitland,

Maryland, is planning to use this SAR data to generate its operational

ice products for the U.S. Navy. Clearly, if the texture analysis techniques

developed here could be extended to SAR im&.-'t ry, then the potential payoff

would be large in terms of practical applicatiow...
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APPENDIX A

THE UNIVARIATE MAXIMUM BAYESIAN CLASSIFIER

The univariate normal distribution, with mean p and variance a2 , has the

probability density function, P(x),

P(x) 1 2 , (A- 1)

where z = if we consider I data sets each representing one of I possi-

ble normally distributed classes, a probability density function, Pj(x), could be

calculated for each of the I classes,

A.x- 2 (A -2)

where pi and r, are the mean and standard deviation of the I"h class, respectively,

and zj = (rp_}* The maximum Bayesian classification rule is to assign an

unknown sample w to class I if

P(x,) > Pm"(n), for all 1 $ m. (A - 3)

The thresi Ad on x separating classes I and n is given by the equation

P:(X) - P() = 0. (A - 4)

The x value at which Eq. (A-4) is true can be considered the threshold,

on x, above which sample x,, would be classified as belonging to class rn

and below which x,, would be assigned to class 1. An expression for 7l,, can be

obtained by substituting expressions for Pj(x) and P,(x) from Eq. (A-2) into

Eq. (A-4). This procedure results in a quadratic form for Im .
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aTm + bT zm + c = 0, (A-- 5)

where

1 1
a =0- 2

2

C Pmy- Al- 2 In
.2 2

a1m P7i 0

The quadratic formula can be applied to give two possible values for Tm.

Timz =--b ± v6b2 -4ac (A-6)

2a

Nuinually oaly one. of the two roots calculated from. F_.q. (A-6) will Satisfy the

condition jus < Tim < tim. The root satisfying this condition is the proper

threshold for a maximum Bayesian classifier separating classes I and m. Here all

classes are assumed to be of equal a priori probability. The procedure would be

the same, but the resulting expressions for a, b, and c would be more complex if

different a priori probabilities were assigned to each dass.

The performance of the maximum Bayesian classifier can be summarized

by a confusion matrix, C = cj, where the i,j element hi the probabilit.y"

classifying a sample from class i into class j. If classification is pe&i-{t, C i; ,a"'

identity matrix. For imperfect classification, the location a.d magnituude -A t .ae

nonzero, off-diagonal elements indicate the expected classification ezi or ±': ' .. w:

separation of each of the possible i,j class pairs.

Consider the special case of three dasses of equal a priori probabilities (

where classes are numbered 1, 2, and 3 in order of increasing mean value: of
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x within the class. Thresholds T12 and T33 are then derived according to Eqs.

(A-5) and (A-6). The confusion matrix for this special case can be calculated by

=i Pi(x)dx

Ci2 =1-oil - q3 (A - 7)

CO f, P(zc)dx.

Confusion matrices have the following mathematical properties.

S 5 = number of classes (A - 8)
1 j

,= 1 (A .- 9)

• 'vt Y0l classification accuracy, A, can be calculated from the confusion ma-

Zy the following equation:

A Z ci _ Tr C (A - 10)

S- 5j cij number of classes(

Figure A-1 shows the normal distributions by ice type for the Laws' Mask

', tM2, texture data from Table C-1. The figure also shows the interclass

'..Ian "ecision thresholds defined by Eqs. (A-5) and (A-6). The calculated

c:r'sr.hca;ion accuracy (Eq. (A-10)) for this case is 0.801.
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APPENDIX B

TESTING DATA SET NORMALITY: THE Q-Q PLOT

The Q-Q plot is a plot of the sample quantile versus the quantile one

would expect from to observe if the observations are normally distributed. For

details on Q-Q plots see Johnson and Wichern (1982). To sunmm-arize we list the

following calculations leading to the Q-Q plot.

1. Arrange the original observations, Xi, to put X 1 ,X 2 , ...X in order

of increasing value.

2. Calculate Pj ,P2 ,...P, according to Pi= n

3. Calculate the standard normal quantiles ql,q2,...q, by integration

of the normal distribution function

Pi=> edz,

where z =

4. Plot the data pairs (qi,Xi) thereby producing the Q-Q plot.

If the values of Xi are normally distributed, the (qi,Xi) points will fall in

a straight line. "Straightness" of the Q-Q plot is therefore a useful measure of

the normality of the distribution of X, The linear correlation coefficient of the

(qj, Xj) points is a good measure of straightness. Figure B-1 is given to illustrate

the appearance of a Q-Q plot. This figure is for the Laws' Mask 2 texture

measure, LM2, listed in 'Fable C-1. Separate Q-Q plots are shown for the second-

year and multiyear ice types. This example is typical of the texture measures

considered in this study. The linear correlation coefficients for for second-year

and multi-year ice types in Figure B-1 axe 0.95 and 0.98, respectively.
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* APPENDIX C

DATA SET A

Data set A consists of numerical values for each , the 25 candidate tex-

ture measures listed in Table II-1 for each of the fifty 64 x 64 pixel KRMS image

samples identified in Figures IV-1 through IV-10. Table C-1 contains these nu- 

* merical values. The values of the candidate texture measures varied by 23 orders

of magnitude, so formatting of these data in tabular form was difficult. The tex-

ture variables were therefore scaled so that each contained only one digit to the

left of the decimal point. In other words, each variable was scaled by some power

of 10, so that its largest value in the data set would be less than 10 but greater

than 1. The scaled data .ire given in Table C-1. However, scale factors required

to convert the tabular data to their original values are included as the second

column on each page of the table. For example, the MEAN variable for sample

FYI is given as 0.447. The scale factor (S.F.) corresponding to the MEAN is

102. Thus, the true value of MEAN for sample FYI is 0.447x102 , or 44.7.

Variables LPR3 and LPRL5 in 'able C-1 are logarithmically transformed

versions of variables PR3 and PR15. See Section IV-B for a discussion of the

reason for and exact nature of this transformation.
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TABLE C-1. VALUES OF TEXTURE MEASURES FOR DATA SET A

MEAS. S.F. FYI FY2 FY3 FY4 FY5 FY6 FY7 SYl

MEAN 102 0.447 0.419 0.460 0.467 0.341 0.466 0.432 1.748
VAR 102 0.474 0.391 0.372 0.314 0.333 0,360 0.406 0.699
SKEW 100 3.170 3.350 3.012 2.951 3.008 3.253 3.096 2.723
KURT 100 2.850 3.340 2.920 2.770 2.980 3.100 3.010 3.150
INR3 102 0.453 0.475 0.481 0.430 0.417 0.437 0.462 0.600
INRI5 102 0.776 0.690 0.672 0.535 0.569 0.568 0.612 1,334
PR.3 106 0.060 0.043 0.030 0.019 0.025 0.029 0.042 0.155
PRI5 106 0.035 0.026 0.020 0.014 0,017 0.022 0.030 0.062
HOM3 10-i 1.626 1.584 1.650 1,748 1.770 1,743 1.590 1.566
11OM15 10- 1  1.310 1.434 1.351 1.539 1.492 1.515 1.508 1.037
ENG3 10- 8 2.215 2,570 2.530 2.825 2.855 2.715 2.430 1.675
ENGI5 10-3  2.030 2.480 2.440 2.835 2.840 2.655 2.415 1.490
ENT3 100 6.352 6.230 6.232 6.100 6.125 6.171 6.277 6.631
ENTi5 10" 6.426 6.260 6.240 6.096 6.109 6.184 6.274 6.733
COR3 10-' 5.258 3.887 3.643 3.196 3.772 3.950 4.352 5.732
CoRa5 10-' 2.027 1.331 1.131 1.484 1.410 2.193 2,703 0,490
LMIv 1020 0.153 0.114 0.106 0.106 0.082 0,181 0.157 0.451
LM2 1016 0.125 0.092 0.118 0.064 0.088 0.082 0.112 0.376
LM3 Iola 0.344 0,338 0.341 0.418 0.387 0.442 0.498 0.745
LM4 10'3  0.564 0.646 0.601 0.695 0.675 0.798 0.857 0.761
LM5 10 2.275 2.728 2.359 2.578 2.602 2.920 3.215 2.425
LM6 l0 1.759 2.075 1.735 1.765 1.700 1.878 2.223 1.573
LM7 1o7 2.258 2.383 2.206 2.211 1.939 2.116 2.698 1.759
EDEN 10' 1,911 1.931 1.818 1.732 1.744 1.735 2.015 2.197
MBRL 100 3.626 3.321 3.480 3.208 3.691 3.511 3.490 4.759

IJPR3 100 2.187 1.853 1.493 1,037 1.311 1.460 1.830 3.136
LPRI5 100 1.648 1.350 1.088 0.731 0.925 1.183 1,493 2.219
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0 TABLE C-1. continued

MEAS. S.F. SY2 SY3 SY4 SY5 SY6 SY7 SY8 SY9

* MEAN 102 1.751 1.734 1.778 1.795 1.784 1.720 1.761 1.744
VAR 102 0.790 1.444 1.703 0.548 0.525 0.594 0.926 1.212
SKEW 10' 2,544 2.399 1.983 2.787 3,317 2.631 2.779 2.355
KURT 100 3.530 3.240 3.950 3,020 3.250 3.160 2,490 3.350
INR3 102 0.584 0.818 0.770 0.500 0.548 0.480 0,448 0.710
INRI5 102 1.380 2,710 2.525 0.949 0.989 1.162 0.934 1.904
PR3 106 0.234 0,754 1.323 0.088 0.083 0.114 0.246 0.573
PRI5 106 0.116 0,265 0.547 0.050 0.035 0.044 0.159 0.212
I1OM3 10 - 1 1.498 1.362 1.444 1.628 1,563 1.696 1,690 1.366
ItOM15 10-1 1.054 0.714 0.867 1.189 1.154 1.147 1.177 0.911
ENG3 10-3 1.695 1.170 1.335 2,005 2,065 2.005 1.585 1.340
ENG15 10-3 1.415 0.940 1.065 1.860 1.885 1,700 1.460 1,195
ENT3 100 6.653 7.000 6.918 6.472 6.448 6.471 6.360 6.879
ENTIS 100 6.796 7.163 7.081 6.537 6.507 6.620 6.735 6.965
COR3 10- 1 6.307 7.167 7.741 5.530 4,824 5.975 7.596 7.097
COR15 10-1 1.721 0.677 2.950 1.460 0.461 0.418 5.404 1.636
I'M 1020 0.449 1.000 1,901 0.311 0.198 0.388 0.665 0,603

LM2 1016 0.365 0.426 0.839 0.296 0.286 0.333 0.181 0.374
* 1M3 10 3  0.716 0.828 1.248 0,602 0.577 0.646 0.491 0.734

LM4 iota  0.571 0.867 0.843 0,678 0.608 0.647 0.606 0.525
LM5 l0 1.621 2.723 2.187 2,154 1,972 1.849 1.911 1.804
LM6 13d 1.193 1.783 1.548 1.519 1.291 1.220 1.228 1.359
LM7 3O 1.657 2.300 1.984 . 1.781 1.594 1.513 1.369 1.922
EDEN 101 2.186 2.446 2.244 1.842 1.924 1.857 1.826 2.347

*R MRE 10 4.565 5.191 5,181 4.300 4.342 4.911 4.969 5.501

LPR3 1O 3.548 4.718 5.280 2.570 2.511 2.828 3.598 4.443
1,P3I15 100) 2,846 3.672 4.397 2.004 1.648 1.876 3.181 3.449

2
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TABLE C-1. continued

MEAS. S.F. SYlo SYII SY12 SY13 SYI4 SY15 SY16 SY17

MEAN 102 1.762 1.815 1.858 1.627 1.914 1.504 1.499 1.480
VAR 102 1.261 1.346 0.468 1.586 0.385 0.538 0.504 0.468
SKEW 100 2.904 1.687 2.467 2.250 2.741 2.723 2.857 2.937
KURT 100 3.030 5.480 3.770 3.680 3.430 3.150 2.800 3.040
INR3 102 0.865 0.604 0.495 0.768 0.442 0510 0.494 0.506
INR15 102 2.416 1.806 0.802 2.445 0.712 1.108 0.882 0.796
PR3 10 0.562 1.288 0,076 1.067 0.043 0.086 0.062 0.049
PRi5 lol 0.237 0.440 0.041 0.486 0.020 0.037 0.032 0.029
HOM3 10- ' 1.302 1.598 1.580 1.363 1.676 1.598 1.636 1.593
HOMI5 15 -1  0.759 1.073 1.310 0.792 1.406 1.128 1.204 1.312
ENG3 10-3  1,160 1.625 2.335 1,145 2.655 2.055 2.060 2.220
ENG15 10- " 0.955 1.435 2.235 0.975 2.525 1.840 1.960 2.165
ENT3 10°  7.003 6,713 6.334 7.005 6.208 6,444 6.414 6.356
ENTJS 100 7.157 6.810 6.368 7.136 6,233 6.543 6.454 6.379
COR3 10-1 6,630 7,815 4.793 7.603 4.324 5.259 5.092 4.449
COR15 10- 1 0.941 3.378 1.557 2.584 0.762 0.055 1.188 1.291
LMI 1020 0.841 0.451 0.161 1.250 0.092 0.299 0,259 0.168
LM2 10e0 0.729 0.144 0.119 0.481 0.118 0.238 0.148 0.183
LM3 1018 0.938 0.404 0.505 0.887 0.409 0.576 0.401 0.592
LM4 10 3  0.811 0.614 0.680 0.761 0.530 0.695 0.598 0.788
LM5 109 2.404 2,235 2.440 1.921 2.123 2.397 2.297 2.673
LM6 log 1.508 1.534 1.766 1.276 1.694 1.807 1.701 1.960
LM7 10

7  1.891 1.892 2.243 1.678 2.376 2.143 2.116 2.380
EDEN 10' 2.508 2.018 1.854 2.267 1.836 1.868 1.843 1.878
M BRL 100 4.968 5.020 3.632 6.812 3.440 4.011 4.157 4.142

LPR3 100 4.424 5,253 2.423 5.065 1.853 2,536 2.219 1.984
LPR15 100 3.560 4.179 1.806 4.278 1.088 1.703 1.568 1.460
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TABLE C-1. continued

MEAS. S.F. SY18 SY19 SY20 SY21 SY22 SY23 SY24 SY25

MEAN 102 1.484 1.623 1.634 1.666 1.715 1.586 1.634 1.607
VAR 102 0.455 0.566 0.752 1.198 0.620 0.940 0.816 1.014
SKEW 100 2.961 3.287 2.704 2.852 3.160 3.038 2.423 2.939
KURT 100 2,950 3.730 3.280 3.400 3.350 4.360 3.870 3.060
INR3 102 0.496 0.501 0.488 0.694 0.570 0.584 0.605 0.654
INR15 102 0.847 1.080 1.167 2.207 1.197 1.690 1.584 2.211
PR3 10 0.053 0.114 0.210 0.583 0.123 0.459 0.308 0.355
PR15 106 0.027 0.045 0.113 0.236 0.053 0.147 0.083 0.103
HOM3 10-'  1.604 1.639 1.615 1.421 1.488 1.516 1.515 1.466
HOMi5 !0-1 1.287 1.183 1.106 0.800 1.077 0.993 1.019 0.782
ENG3 I0-  2.185 2.095 1.755 1.270 1.830 1.665 1.685 1.435

ENG15 10-3 2.060 1.900 1.470 1.000 1.655 1.385 1.525 1.130
ENT3 100 6.370 6.436 6.607 6.911 6.546 6.689 6.666 6.824
ENTI5 100 6.412 6.527 6.756 7.107 6.636 6.837 6.749 6.992
COR3 10-1 4,549 5.577 6.788 7.169 5.434 6.874 6,376 6.808
CORI5 10-1 0.772 0.298 2,722 1.326 0.414 0.928 0,000 0.000
LMI 1020 0.105 0.201 0.417 1.104 0.308 0.556 0.295 0.799
LM2 10A 6 0.234 0.260 0.205 0.471 0,398 0.379 0,301 0.494
LM3 1013 0.632 0.554 0.441 0.909 0.634 0.552 0.592 0.682
LM4 101 0,812 0.613 0.680 0.933 0.668 0.553 0.649 0.629
LMS 10 2.260 2.045 2.455 2.682 2.271 1.885 2.439 2.012
LM6 106 1.489 1.392 1.614 1.659 1.672 1-293 1.884 1.396
LM7 10

7  1.964 1.548 1.763 1.839 2.091 1.529 2.486 1.824
EDEN 101 1.851 2.130 2.131 2.341 2.153 2.013 1.997 2,139
MBRL 100 4.004 4.417 4.779 5.674 4.452 4.714 4.331 5.110

LPR3 10°  2.063 2.828 3.439 4.460 2.904 4.221 3.822 3.964
LPRI5 10 1.388 1.899 2.820 3.556 2.063 3.083 2.511 2.727
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TABLE C-i. continued

MEAS. S.F. MYl MY2 MY3 MY4 MY5 MY6 MY7 MY8

MEAN 102 1.126 1.061 1.071 1.149 1.135 1.243 1.097 1.048
VAR 10' 1.473 1.438 1.498 1.177 1.139 1.626 2.660 2.416
SKEW 100 2.172 2.466 2.569 2.193 2.609 2.761 2.540 2.855
KURT 100 3.630 3.290 2.960 5.180 2.970 2.450 3.208 2.800
INR3 Io 0.927 0.757 0.735 0.822 0.872 0.967 1.296 1.273
INRIS 102 2.792 2.569 2.671 2.268 2.267 3.703 4.248 4.557
PR3 I0 0.857 0.848 0.808 0.793 0.380 0.745 2.742 1.984
PRI5 106 0.219 0.276 0.335 0.211 0.128 0.186 0.837 0.715
HOM3 10-1 1.235 1.303 1.386 1.302 1.241 1.188 1.110 1.093
HOMI5 10- 1 0.778 0.704 0.870 0.840 0.786 0.624 0.599 0.582
ENG3 I0 - 8 1.155 1.115 1.100 1.220 1.150 0.925 0.745 0.730
ENGIS 10- 8  0.995 0.945 0.900 1.070 1.035 0.795 0.670 0.660
ENT3 100 7.013 7.011 7.031 6.931 6.970 7.176 7.386 7.395
ENT15 100 7.111 7.149 7.205 7.028 7.052 7.294 7.457 7.487
COR3 10 -1 6.862 7.399 7.549 6.550 6.151 7.029 7.550 7.386
CORI5 10 -  0.094 0.683 1.794 0.147 0.000 0.000 1.370 0.504
LM1 100 0.953 0.583 1.208 0.419 0.480 1.027 1.325 1.538
LM2 Iola 0.768 0.485 0.486 0.447 0.682 0.901 1.075 0.974
LM3 1013 1.297 0.639 0.622 0.702 1.008 1.124 1,408 1.175
LM4 1012 0.979 0.654 0.611 0.792 0.834 0.955 0.990 1.387
LM5 log 2.436 2.040 1.911 2.764 2.936 2.960 3.106 2.350
LM6 108 1.525 1.351 1.357 1.640 2.189 1.923 2.288 1.498
LM7 107 1.872 1.475 1.828 1.721 2.600 2.182 2.676 1.883
EDEN 10' 2.584 2.486 2.498 2.539 2.580 2.518 2.932 2.986
MBRL 100 5.686 6.312 6.084 4.831 5.147 6.817 6.159 7.082

LPR3 100 4.846 4.835 4.787 4.768 4.032 4.706 6.009 5.685
LPR1 100 3.481 3.713 3.906 3.444 2.944 3.318 4.822 4.665
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TABLE C-1. continued

MEAS. S.F. MY9 MYlO MYI1 MY12 MY13 MY14 MY15 MY16

MEAN 102 0.993 1.429 1.425 1.394 1.608 1.538 1.567 1.532
VAR 102 1.771 1.253 2.390 2.528 0.616 1.258 1.668 2.205
SKEW 100 3.064 2.179 1.736 2.185 2.691 2.449 2.286 2.355
KURT 100 2.750 3.920 5.470 4.450 2.930 3.330 3.120 3.800
INR3 102 1.092 0.685 1.107 1.016 0.479 0.81 1 0.905 0.937
INRi5 102 3.067 2.080 3.248 3.594 0.931 2.120 2.962 3.643
PR3 106 0.975 0.827 3.746 3.284 0.115 0.549 0.970 2.095
PRI5 106 0.397 0.404 1.444 1.023 0.069 0.264 0.446 0.607
HOM3 10-1 1.120 1.52] 1.245 1.629 1.632 1.417 1.288 1.275
HOMI5 10- ' 0.687 0.921 0.722 0.731 1.213 0.843 0.713 0.641
ENG3 I0-  0.890 1.360 1.015 0.920 1.900 1.300 1.110 0.935
ENG15 10-  0.790 1.130 0.895 0.770 1.725 1.025 0.900 0.790
ENT3 100 7.228 6.865 7,136 7.216 6.505 6.920 7.061 7.196
ENTI5 I0 0 7.308 7.016 7.220 7.358 6.588 7.091 7.213 7.330
COR3 10- ' 6.891 7.451 7.667 7.957 6.176 6.772 7.279 7.840
CORI5 10' 1.263 2.120 2.594 2.551 2.670 1.794 1.496 1.079
IMI 1020 1.151 0.698 1.704 1.441 0.280 1.078 1.627 1.736
LM2 10'" 0.947 02126 0.778 0.498 0.206 0.654 0.904 0.720
LM3 1013 0.834 0.602 1.181 0.827 0.448 1.677 1.606 1.242
LM4 Io'3  0.927 0.653 0.921 0.791 0.645 1.184 1.328 0.861
LM5 log 2.546 2.063 2.398 2.805 2.631 2.706 3.203 2.103
I.M6 Iol 1.585 1.206 1.570 1.896 1.952 1.621 1,867 1.342
LM7 107 1.726 1.213 1.939 2.181 2.351 2.019 2.047 1.654
EDEN 101 2.915 2.218 2.650 2.673 1.901 2.365 2,480 2512
MBRL 100  5.959 6.130 6.145 6.481 4.438 5.868 6.054 6.087

LPR3 100 4.975 4.810 6.321 6.J89 2.837 4.400 4.970 5.740
LPR15 100 4.076 4.094 5.367 5.023 2.326 3.668 4.193 4.501
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TABLE C-1. continued

MEAS. S.F. MY17 MY18

MEAN 102 1.436 1.466
VAR 102 1.025 1.214
SKEW 100 2.148 2.802
KURT 100 4.140 3.250
INR3 102 0.671 0.750
INR15 102 1,533 1.800
PR3 l06 0,543 0.597
PRI5 106 0.159 0.288
HOM3 10-1 1.418 1.379
HOMi5 10-1 0.994 0.874
ENG3 10- 2 1.510 1.230
ENGIS 10- 3  1.420 1.115
ENT3 100 6.772 6.955
ENT15 100 6.811 7.022
COR3 10-1 6.749 7.029
CORI5 10- ' 1.724 2.663
LM1 1020 0.214 0.534

LM2 1010 11:s07 0.432
LM3 l13 0.772 0.579
LM4 Iola 0.877 0.587
LM5 log 2.830 2.071
LM6 lOs  1.869 1.618
LM7 10 7  2.025 1.853
EDEN 101 2.222 2.279
MBRI, 100 4.660 4.351

LPR3 1o 4.389 4.484
LPR15 100 3.161 3.755
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APPENDIX D

DATA SET B

Data set B consists of a subset of the candidate texture variables contained

in d-:tt set A. Twelve of the original 25 texture variables in data set A were

elniinated in the formation of data set B for reasons delineated in Section WV.

MEA N Las also been eliminated, since it is not a true texture measure. The 12

: _'uc reasures of data set B have been processed by the scale, invert, then force

. ;-nation described in Section V. This data matrix, therefore, contains row

sums.i with a constant value of 1.0.
2
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TABLE D-1. VALUES OF TEXTURE MEASURES FOR DATA SET B

VAR INR3 INRI5 HOM3 HOMI5 LM1 LM2 LM3 LM4 LM6 EDEN MBRL

FYI 0.012 0.165 0.010 0.136 0.041 0.165 0.010 0.172 0.008 0.102 0.025 0.154
FY2 0.006 0.172 0.007 0.134 0.020 0.181 0.005 0.184 0.026 0.056 0.029 0.179
FY3 0.004 0.164 0.006 0.145 0.035 0.174 0.009 0.176 0.016 0.095 0.012 0.164
FY4 0.000 0.180 0.000 0,177 0.000 0.180 0.000 0.172 0.036 0.073 0.000 0.183
FY5 0.001 0.182 0.002 0.182 0.009 0.182 0.004 0.176 0.032 0,070 0.002 0.159
FY6 0.004 0.184 0.002 0.181 0.005 0.178 0.003 0.174 0.060 0.035 0.000 0.174
FY7 0.008 0.183 0.004 0.141 0.006 0.184 0.009 0.169 0.074 0.000 0.043 0.178
SYl 0.028 0.134 0.034 0.118 0.089 0.135 0.052 0,118 0.046 0.084 0.063 0.101
SY2 0.033 0.131 0.034 0.097 0.082 0.129 0.046 0.116 0.009 0.161 0.058 0.105
SYI 0.079 0.089 0.089 0.065 0.142 0,082 0.059 0.104 0.065 0.051 0.094 0.080
SY4 0.100 0.101 0.084 0.088 0.119 0.000 0.130 0.054 0.062 0.109 0069 0.083
SY5 0.017 0.156 0.018 0.136 0.063 0.150 0.039 0.138 0.030 0.114 0.015 0.123
SY6 0.015 0.145 0.019 0.118 0.069 0.160 0.037 0.140 0.016 0.133 0.026 0.121
SY7 0.020 0.154 0.026 0.148 0.068 0.138 0.044 0.128 0.023 0.142 0.017 0.093
SY8 0.045 0.166 0.017 0.152 0.065 0.117 0.020 0.163 0,016 0.141 0.013 0.094
SY9 0.064 0.112 0.057 0.068 0.110 0.120 0.051 0.118 0.000 0.149 0.082 0.069
SYIO 0.064 0.078 0.074 0.049 0.130 0.093 0.105 0.088 0.053 0.081 0.098 0.087
SYll 0.072 0.129 0.052 0.123 0.080 0.131 0.013 0.166 0.017 0.101 0.038 0.088
SY12 0.011 0,165 0.012 0.130 0.043 0.173 0.010 0.158 0.032 0.088 0.018 0.161
SY13 0.095 0.107 0.083 0.067 0.136 0.062 0.072 0.103 0.048 0.142 0.074 0.012
SY14 0.005 0.169 0.008 0.150 0.024 0.173 0.009 0.165 0.001 0.119 0.014 0.163
SY15 0.017 0.155 0.025 0.129 0.074 0.152 0.030 0.142 0.034 0.089 0.017 0.137
SY16 0.014 0.161 0.015 0.141 0.062 0.159 0.016 0.168 0.015 0.101 0.016 0.133
SY17 0.011 0.166 0.012 0.137 0.044 0.176 0.022 0.150 0.056 0.063 0.022 0.140
SY18 0.010 0.156 0.013 0.130 0.045 0.170 0.029 0.134 0.057 0.103 0.016 0.136
SY19 0.018 0.147 0.022 0.131 0.061 0.162 0.032 0.137 0.017 0.120 0.052 0.112
SY20 0,031 0.155 0.026 0.130 0.076 0.137 0.024 0.156 0.030 0.080 0.054 0.100
SY21 0.065 0.118 0.072 0.083 0.133 0.076 0.069 0.099 0.082 0.058 0.084 0.063
SY22 0,022 0.139 0.028 0.098 0.081 0,147 0.056 0.131 0.028 0.100 0.056 0.114
SY23 0.043 0.132 0.047 0.102 0.093 0.120 0.061 0.137 0.005 0.136 0.036 0.099
SY24 0.036 0.133 0.044 0.106 0.092 0.149 0.040 0.137 0.024 0.082 0.036 0.120
SY25 0.048 0.116 0.066 0.088 0.126 0.097 0.068 0.119 0.019 0.120 0.052 0.081
MYI 0.082 0.070 0.093 0.036 0.132 0.086 0.i15 0.047 0.087 0.081 0.113 0.060
MY2 0.075 0.096 0.079 0.049 0.137 0.114 0.065 0.121 0.023 0.115 0.094 0.031
MY3 0.082 0.104 0.082 0.070 0.114 0.062 0.068 0.128 0.016 0.133 0.099 0.042
MY4 0.060 0.088 0.070 0,050 0.119 0.133 0.062 0.119 0.051 0.046 0.105 0.095
MY5 0.060 0.082 0.073 0.037 0.134 0.133 0.104 0.085 0.061 0.030 0.115 0.085
MY6 0.095 0.064 0.134 0.024 0.162 0.082 0.140 0.070 0.085 0.027 0.106 0.012
MY7 0,160 0.000 0.148 0.004 0.157 0.051 0,160 0.032 0.086 0.011 0.153 0.038
MY8 0.129 0.004 0.144 0.000 0.144 0.029 0.130 0.054 0.144 0.078 0.144 0.000
MY9 0.096 0.036 0,098 0.006 0.138 0.064 0.135 0.098 0.072 0.065 0.146 0.045
MY1O 0.067 0.116 0.064 0.106 0.108 0.110 0.043 0.134 0.025 0.121 0.065 0.041
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TABLE D-1. continued

VAR INR3 INR15 HOM3 HOM15 LMI LM2 LM3 LM4 LM5 EDEN MBRL

MYI 0.148 0.036 0.113 0.038 0.143 0.018 0.118 0.062 0.077 0.086 0.122 0.040
MY12 0,146 0,049 0.118 0.123 0.131 0.039 0.067 0.098 0,048 0.040 0.116 0,024
MY13 0.023 0.167 0.018 0.143 0.061 0.160 0.025 0.165 0.025 0.066 0.024 0.123
MY14 0.073 0.100 0.072 0,087 0.132 0.082 0.106 0.000 0.139 0.058 0.092 0.057
MY15 0.103 0.079 0.108 0.051 0.154 0.027 0.148 0.009 0.166 0.001 0.106 0,047
MY16 0.129 0.066 0.124 0,043 0.151 0.015 0.104 0.052 0.063 0.112 0.100 0.041
MY17 0.052 0.122 0.043 0.082 0.098 0.159 0.043 0.116 0.070 0.041 0.067 0,107
MY18 0.061 0.099 0.050 0,067 0.110 0.119 0.058 0.130 0.011 0.114 0.069 0.112

0
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APPENDIX E

DATA SET C

Data set C consists of 10 of the texture variables from data set B. LM4

and LM5 from B are not present in C. In addition to the 10 texture measures,

this data set includes the mean image brightness value, MEAN. The 11 variables

in data set C have been processed by the scale, invert, then force transformation

described in Section V. This data matrix, therefore, contains row sums with a

constant value of 1.0.
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TABLE E-1. DATA SET C

VAR INR3 INRI5 HOM3 HOM15 LML LM2 LM3 EDEN MBRL MEAN

FYI 0.013 0.183 0.011 0.151 0.046 0.183 0.012 0.190 0.027 0.171 0.013
FY2 0.007 0.186 0.008 0.144 0.022 0.195 0.006 0.199 0.032 0.193 0,010
FY3 0.005 0.181 0.007 0.161 0.038 0.193 0.010 0.195 0.013 0.182 0.015
FY4 0.000 0.199 0.000 0.19$ 0.000 0.199 0.000 0,190 0.000 0.202 0.016
FY5 0.002 0.203 0.002 0.203 0.010 0.203 0.005 0.195 0.002 0.177 0.000
FY6 0.004 0.200 0.002 0.197 0.005 0.194 0.004 0.189 0.000 0.189 0.016
FY7 0.008 0.195 0.004 0.151 0.007 0.197 0.010 0.181 0.046 0.190 0.012
SYI 0.027 0.131 0.033 0,116 0.087 0.132 0.051 0.115 0.061 0.099 0.148
SY2 0.034 0.134 0.035 0.099 0.084 0.132 0.048 0.119 0.060 0.108 0.148
SY3 0.077 0.087 0.086 0.064 0.138 0.079 0.057 0.101 0.091 0.078 0.142
SY4 0.102 0.103 0.085 0.089 0.121 0.000 0.132 0,055 0.070 0.085 0.157
SY5 0.017 0,153 0.017 0.134 0.062 0.148 0.039 0.136 0.016 0.122 0.157
SY6 0.015 0.144 0.019 0.118 0.068 0.159 0.037 0 139 0.026 0.120 0.155
SY7 6.020 0.157 0.026 0.151 0.069 0.141 0.045 0.130 0.017 0.095 0.148
SY8 0.045 0.167 0.017 0.152 0.065 0.117 0.020 0.153 0.013 0.094 0.156
SY9 0.064 0.112 0.057 0.068 0.110 0,120 0.051 0.118 0.082 0.068 0.150-AAA AC fl Afl

SYiO 0.064 0.077 0.074 u.t 0.128 0.092 0.104 0.08' v. , 9 0" .0U,& 0.1-An

SYIl 0.070 0.125 0.050 0.118 0.077 0.127 0.013 0.151 0.036 0.084 0.149
SY12 0.011 0.156 0.011 0.123 0.041 0.164 0.009 0.150 0.017 0.163 0.165
SY13 0.099 0.112 0.087 0.070 0.143 0.065 0.075 0.108 0.078 0.013 0.150
SY14 0.005 0.160 0.007 0.142 0.023 0.164 0.009 0.156 0.014 0.155 0.165
SY15 0.016 0.154 0.024 0.128 0.074 0.151 0.030 0.141 0.017 0.136 0.127
SY16 0.014 0.159 0.015 0.139 0.061 0.157 0.014 0.166 0.015 0.131 0.128
SY17 0.011 0.164 0.012 0.135 0.043 0.174 0.021 0.148 0.021 0.138 0.132
SY18 0.011 0.162 0.014 0.134 0.047 0.176 0.030 0.139 0.017 0.141 0.129
SYI9 0.018 0.148 0.022 0.132 0.061 0.153 0.032 0.137 0.052 6.113 0.133
SY20 0.031 0.151 0.026 0.126 0.074 0.134 0.023 0.151 0.052 0.097 0.135
SY21 0.065 0.117 0.071 0.083 0.13 0.075 0.069 0.098 0.083 0.062 0.144
SY22 0.022 0.136 0.027 0.096 0.080 0.145 0.055 0.129 0,055 0.112 0.144
SY23 0.044 0.133 0.047 0.103 0.094 0.122 0.051 0.138 0.037 0.101 0.130
SY24 0.035 0.129 0.043 0.102 0.089 0.145 0.038 0.133 0.035 0.116 0.135
SY25 0.048 0.118 0,067 0.089 0.128 0.098 0.069 0.120 0.052 0.082 0,130
MY1 0.089 0.076 0,102 0.038 0.144 0.094 0.126 0.051 0.123 0.065 0.090
MY2 0.080 0.103 0.085 0.052 0.147 0.122 0.t '0 0.130 0.101 0.033 0.077
MY3 0.089 0.112 0.089 0.076 0.123 0.067 0,0', 1 0.138 0,107 0.045 0.081
MY4 0.061 0.089 0,071 0.051 0.121 0.135 0.063 0.121 0.107 0.096 0.085

MY5 0.060 0.083 0.074 0.037 0,135 0.134 0.105 0.086 0.116 0.085 0.086
MY6 0.096 0.064 0.136 0.024 0.165 0.083 0.143 0.071 0.108 0.012 0.099
MY7 0.163 0.000 0151 0.004 0.160 0.052 0.163 0,033 0.156 0.039 0.078
MY8 0.153 0.004 0.171 0.000 0.171 0.034 0.154 0.064 0.171 0.000 0.077
MY9 0.104 0.039 0.105 0.007 0.149 0.069 0.146 0.105 0.158 0.049 0.069
MYIO 0.069 0.120 0.066 0.109 0.111 0.114 0.045 0.138 0.067 0.042 0.119
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TABLE E-I. continued

VAR INR3 INR15 HOM3 HOM16 LMI LM2 LM3 EDEN MBRL MEAN

MYII 0.155 0.038 0.118 0.039 0,150 0.019 0.124 0.065 0.128 0.042 0.121
MY12 0.144 0.049 0.116 0.121 0.129 0.039 0.066 0.097 0.115 0.024 0.102
MY13 0.022 0.158 0.017 0.136 0.058 0.152 0.024 0,156 0.023 0.116 0.137
MY14 0.078 0.107 0.076 0.093 0.141 0.088 0.113 0.000 0.098 0.061 0.147
MYl5 0.103 0.082 0.111 0.053 0.158 0.028 0.152 0.010 0.109 0.049 0.143
MY16 0.137 0.069 0.131 0.046 0.159 0.015 0.110 0.055 0.106 0.044 0.128
MY17 0.052 0.121 0.042 0.082 0.097 0.158 0.043 0.115 0.066 0.106 0.118
MYI8 0.062 0.100 0.050 0.068 0.112 0.121 0.058 0.132 0.070 0.113 0.115

a
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APPENDIX F
S

DATA SET D

Data set D consists of 42 synthetic nmxture images. Table F-1 contains nu-

merical vaiues for mean intensity and for each of the 12 selected texture measures

(VAR, INR3, INR15, HOM3, HOM15, LM1, LM2, LM3, LM4, LM5, EDEN, and

MBRL) for each sample. in data set D. The mixtures are labeled MX1 through

MX42, and are 128 x 128 pixels in si7e. The KRMS synthetic mixture images

are shown in Figures VII-1 through VII-7. Formatting and scaling of variables

in this table is the same as in Table C-1.

Table F-1 also contains the compositions of each mixture by ice type.

These are given at the bottom of the table.

0

2
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TABLE F-1. VALUES OF TEXTURE MEASURES FO. DATA SET D

MEAS. S.. M MX2 MX3 MX4 MX5 MX6 MX7 MX8

MEAN 102 1.200 1.286 1.355 1.728 1.736 1.656 0.418 0.413
VAR 102 1.706 1.797 1.836 1.019 0.671 0.651 0392 0.378
INR3 102 1.021 1.085 1.068 0.670 0.625 0.545 0.453 0.468
INR15 102 2.969 3.014 3.042 1.649 1.254 1.163 0.676 0.653
HOM3 10-1 1.278 !.233 1.244 1.464 1,520 1.573 1.672 1.636
HOM15 10'1 0.779 0.732 0.733 0.980 1.136 1.138 1.408 1.415
LMI 1020 0.903 1.163 1.183 0.619 0.339 0.354 0.148 0.148
LM2 1016 0.857 0.843 0.766 0.403 0.345 0.247 0.103 0.104
LM3 1013 1.306 1.292 1.090 0.786 0.657 0.559 0.399 0.399
LM4 i0' a  1.041 1.016 0.928 0.707 0,710 0,691 0.685 0.685
LM5 10 2.858 2.768 2.779 2.123 2.265 2.507 2.621 2.658
EDEN 101 2.648 2.722 2.717 2.194 2.078 1.992 1.842 1.897
MBRL 100 6.143 6.482 6.115 5,661 4.325 4.604 3.673 3.722

% FY 0 0 0 0 0 0 100 100
% SY 0 0 0 100 100 100 0 0
%MY 100 100 100 0 0 0 0 0

TABLE F-1. continued

MEAS. S.F. MX9 MX10 MX1I MX12 MX13 MX14 MX15 MX16

MEAN 102 0.427 0.931 0.939 1.332 1.323 1.190 1.277 0.783
VAR 102 0.356 0.928 0.830 0.570 1.042 1,101 1.534 0.887
INR3 102 0.442 0.632 0.642 0.525 0.659 0.704 0.843 0,640
INR15 102 0.592 1.607 1.646 0.997 1,974 1.867 2.402 1.530
i10M3 10- ' 1.700 1.516 1.511 1.601 1.490 1.617 1.438 1.507
HiOM15 10'-  1.493 1.094 1.107 1.222 0.993 0,982 0.979 1.123
LM1 1020 0,133 0.551 0.487 0,291 0.733 0.633 1.019 0.434
LM2 1016 0.092 0.275 0,348 0.225 0.409 0.372 0.456 0.331
LM3 1018 0.433 0.529 0.651 0.575 0,757 0.640 0.783 0.550
LM4 1018  0.739 0.650 0.737 0.703 0.765 0.715 0.770 0.655
IM5 10) 2.742 2.218 2.408 2,367 2,337 2.339 2.525 2.277
EDEN 10' 1.818 2.169 2.060 1.961 2.168 2.239 2.337 2.202
MBRL 100 3.617 4.384 4.449 4.155 5.059 5.265 5.373 4.330

% FY 100 50 50) 25 25 25 25 50
% SY 0 25 25 50 50 25 25 0
%MY 0 25 25 25 25 50 50 50
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TABLE F-1. continued

MLEAS. S.F. MX17 MX 18 MX19 MX20 MX21 MX22 MX23 MX24

* MEAN 102 1.446 1.010 1.387 0.785 0.728 1.029 1.556 1.445
VAR 102 1.550 0.614 0.691 0.362 0.709 1.438 1.206 1.271
INR3 102 0.896 0.543 0.569 0.448 0.572 0.879 0.829 0.846
INRi5 102 2.558 1.093 1.204 0.645 1.207 2.636 2.350 2.091
HOM3 10- 1 1.402 1.554 1.545 1.683 1.553 1.329 1.348 1.352
IOMi5 10-1 0.900 1.222 1.161 1.445 1.252 0.873 0.840 0.895

* LMI 1020 1.049 0.353 0.381 0.104 0.442 0.933 0.736 0.711
LM2 1018 0.711 0.236 0.274 0.095 0.264 0.611 0.562 0.548
LM3 Iola 1.171 0.605 0.590 0.406 0.62(, 1.036 0.935 0.893
LM4 Io' a  0.971 0.788 0.652 0.678 0.789 0.896 0.896 0.795
LM5 lol 2.823 2.639 2.163 2.606 2.615 2.542 2.561 2.403
EDEN 101 2.395 2.022 2.107 1.824 2.044 2.471 2.383 2.402
MBRL 100 6.116 4.142 4.511 3.531 3.992 5,277 5.311 5.401

% FY 0 50 25 75 7, 25 0 0
% SY 50 50 75 25 0 0 75 25
% MT 50 0 0 0 25 75 25 75

TABLE F-1. continued

* MEAS. S.F. MX25 MX26 MX27 MX28 MX29 MX30 MX31 MX32

MEAN 102 1.077 1.214 1.105 1.004 0.894 1,239 0.830 0.883
VAR l02 1.008 1.010 0.984 1.041 0.512 0.694 0.653 1.095
1NR3 102 0.689 0.655 0.697 0.792 0.493 0.508 0.528 0.687

* INRI5 10' 1.831 1.787 1.781 1.995 0.818 1.117 0.922 1.812
11OM3 10- 1 1.445 1.494 1.415 1.457 1.629 1.597 1.607 1.418
HOM15 10-1 0.969 1.045 0.961 1.083 1.284 1.162 1.336 1.007
JIM I 1020 0.599 0.734 0.567 0.541 0.208 0.400 0.417 0.702
LM2 10l6 0.343 0.383 0.411 0.484 0.151 0.250 0.197 0.398
LM3 iola  0.556 0.776 0.689 0.776 0.428 0.499 0.560 0.595
LM4 Io l a  0.613 0.847 0.728 0.780 0,601 0.641 0.724 0.655
1.M5 lo g  2.118 2.572 2.364 2.539 2.172 2.227 2.516 2.351
EDEN 101 2.315 2.175 2.298 2.253 1.892 2.097 1.925 2.306
MBRL 10" 4.940 4.658 4,954 4.659 4.025 4.717 4.103 5.095

% FY 33 33 33 33 67 33 67 33
% SY 33 33 33 33 33 67 0 0
% MY 33 33 33 33 0 0 33 67

2410.



TABLE F-i. continued

MEAS. S.F. MX33 MX34 MX35 MX36 MX37 MX38 MX39 MX40

MEAN 102 1.646 1.579 0.448 1.753 1.765 1.795 1.492 1.660
VAR 10 1.046 1.116 0.424 1.176 0.732 1.296 0.499 0,914
INR3 102 0.632 0,657 0,469 0.691 0.495 0.676 0.501 0.662
INR15 102 1.513 1.653 0.657 2.013 1.020 1.833 0.906 1.416
HOM3 10-1 1.522 1.525 1.652 1.468 1.640 1,461 1.608 1.541
1HOMI5 10- ' 1.039 1.045 1.417 0.911 1.167 0.989 1.230 1.034
LM1 1030 0.665 0.674 0.168 0.949 0.525 1.017 0.264 0.634
LM2 10le  0.360 0.377 0.103 0.485 0.280 0.414 0.204 0.336
LM3 Iola 0.709 0.859 0.368 0.845 0.582 0,734 0.547 0.638
LM4 101 0.706 0.851 0.627 0.729 0.652 0.693 0.753 0.723
LM5 1o0 2.173 2.511 2.466 2.180 2.097 2.171 2.554 2.315
EDEN 10' 2.083 2.215 1.847 2.266 1866 2.186 1.859 2.186
MBRL 100 5.608 5.646 3.731 5.392 5.358 6.073 4.363 5.566

% FY 0 0 100 0 0 0 0 0
% SY 67 33 0 100 100 100 100 100
% MY .33 b7 0 6 0 0 0 0

TABLE F-I. contiuued

MEAS. S.F. MX41 MX42

MEAN 102 1.561 1.104
VAR 102 1.498 1.486
INR3 102 0.778 0.794
INR15 102 2.429 2.427
11OM3 10- ' 1.405 1.310
IIOMI5 10 ' 0.863 0.791
LM1 1020 1.269 (1,886
LM2 101 0.557 0.525
LM3 1018 1.144 0.687
LM4 J013 0.986 0.674
LM5 log 2.665 2.333
EDEN 10' 2.303 2.524
MBRL 100 6.571 6,340

% FY 0 0
% SY 0 0
% MY 100 100
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APPENDIX G

DATA SET E

Data set E consists of a subset (the 12 texture measures) of the variables

contained in data set D. MEAN is not included in E since t is not a true texture

measure. The 12 texture measures of data set E have been processed by the

scale, invert, then force transformation described in Section V. This data matix,

therefore, contains row sums with a constant value of 1.0.
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TABLE G-1. DATA SET E

VAR INR3 INRI5 HOM3 HOMI5 LMI LM2 LM3 LM4 LM5 EDEN MBRL

MXI 0.143 0.016 0.152 0.015 0.147 0.049 0,157 0.000 0.157 0.000 0.144 0.022
MX2 0.159 0.000 0.161 0.000 0.163 0.01.5 0.160 0.002 0.154 0.019 0.163 0.005
MX3 0.161 0.004 0.161 0.004 0.160 0.012 0,142 0.037 0.119 0.017 0.160 0.024
MX4 0.073 0.105 0.070 0.081 0.110 0.091 0.066 0.090 0.039 0.157 0.068 0.049
MX5 0.035 0.116 0.044 0.100 0.076 0.130 0.064 0.112 0.040 0.127 0.047 0.120
MX6 0.035 0.146 0.040 0.126 0.081 0.136 0.035 0.138 0.036 0.080 0.033 0.112
MX7 0.004 0.178 0.006 0.170 0.020 0.174 0.003 0.175 0.035 0.056 0.005 0.173
MX8 0.003 0.178 0.005 0.160 0.019 0.179 0.003 0.179 0.035 0'.049 0.016 0.174
MX9 0.000 0.187 0.000 0.187 0.000 0.182 0.000 0.174 0.059 0.029 0.000 0.182
MXIO 0.061 0.110 0.065 0.095 0.082 0.097 0.037 0.130 0.017 (.132 0.061 0.113
MXII 0.052 0.113 0.070 0.097 0.083 0.110 0.055 0.114 0.051 0.097 0.044 0.114
MX12 0.024 0.146 0.028 0.132 0.00 0.141 0.029 0.131 0.039 0.108 0.027 0.134
MX13 0.074 0.105 0.090 0.087 0.104 0.073 0.066 0.093 0.059 0.109 0.061 0.079
MX14 0.077 0.090 0.079 0.125 0.102 0.083 0.056 0.108 0.039 0.104 0.071 0.065
MX15 0.131 0.062 0.122 0.072 0.111 0.035 0.078 0.092 0.063 0.072 0.095 0.065
MX16 0.056 0.108 0.060 0.092 0.076 0,112 0.049 0.126 0.019 0.119 0.066 0.115
MX17 0.138 0.050 0.137 0.062 0.133 0.032 0.138 0.025 0.143 0.008 0.109 0.026
MXi8 0.030 0.147 0.036 0.120 0.062 0.137 0.033 0.131 0.074 Q.050 11.039 0.140
MXI9 0.037 0.130 0.040 0.108 0.071 0.123 0.039 0.124 0.019 0.148 0.052 0.110
MX20 0.001 0.179 0.004 0.175 0.011 0.181 0.001 0.174 0.032 0.060 0.001 0.181
MX21 0.041 0.138 0.043 0.118 0.055 0.122 0.039 0.126 0.074 0.055 0.043 0.146
MX22 0.114 0.050 0.130 0.032 0.127 0.045 0.106 0.045 0.105 0.065 0,113 0.067
MX23 0.090 0.063 0.113 0.039 0,135 0.072 0.097 0.062 0.105 0.061 0.098 0.065
MX24 0.099 0.060 0.098 0.041 0,126 0.077 0.096 0.071 0,071 0.096 0.104 0.062
MX25 0.068 0.095 0.078 0,070 0.106 0.089 0.051 0.123 0.004 0.150 0.085 0.083

MX26 0.072 0.109 0.080 0.091 0.096 0.075 0.062 0.092 0.092 0.062 0.065 0.103
MX27 0.068 0.096 0.077 0.062 0.111 0.096 0.066 0.105 0.046 0.103 0.085 0.085
MX28 0.075 0.074 0.093 0.078 0.088 0.102 0.083 0.092 0.066 0.068 0.078 0.102
MX29 0.018 0.154 0.015 0.142 0.046 0.152 0.013 0.156 0.000 0.151 0.014 0.140
MX30 0.037 0.145 0.035 0.126 0.070 0.120 0.033 0.139 0.015 0.134 0.050 0.098
MX31 0.036 0.157 0.024 0.145 0.037 0.132 0.025 0.144 0.051 0.081 0.021 0.147
MX32 0.082 0.101 0.081 0.065 0.105 0.080 0. 35 0.124 0.020 0.109 0.088 0.079
MX33 0.077 0.117 0.062 0.103 0.099 0.086 0.058 0.106 0.040 0.150 0.049 0.053
MX34 0.086 0.112 0.073 0.105 0.099 0.086 0.063 0.080 0.095 0.077 0.074 0.051
MX35 0.008 0.176 0.005 0.162 0.018 0.170 0.003 0,180 0.011 0.093 0.006 0.169
MX36 0.087 0.096 0.091 0,079 0.120 0.043 0,081 0.077 0.046 0.140 0.078 0.061
MX37 0.043 0.156 0.030 0.148 0.073 0.109 0.042 0,131 0.020 0.170 0.009 0.068
MX38 0.108 0.109 0.086 0,083 0.113 0.037 0.072 0.104 0.036 0.154 0.069 0.028
MX.39 0.017 0.162 0.023 0.143 0.062 0.154 0.026 0.144 0.062 0.069 0.008 0.130
MX40 0.062 0.133 0.055 0.108 0.099 0.089 0.052 0.117 0.045 0.117 0.067 0.054
MX41 0.137 0.085 0.133 0.065 0.147 0.060 0.108 0.031 0.155 0.045 0.095 0.000
MX42 0.121 0.072 0,119 0.026 0.146 0.052 0.090 0.104 0.026 0,109 0.124 0.012
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APPENDIX. H

DATA SET F

Data set F consists of 10 of the texture variables from data set E. LM4 and

LM5 from E have are not present in F. In addition to the 10 texture measures,

this data set includes the mean image brightness value, MEAN. The 11 variables

in data set F have been processed by the scale, invert, then force transformation

described in Section V. This data matrix, therefore, contains row sums with a

constant value of 1.0.
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TABLE H-1. DATA SET F

VAR INR3 INR15 HOM3 HOM15 LM1 LM2 LM3 EDEN MBRL MEAN

MXOI 0.153 0,017 0.163 0.016 0.157 0.053 0,168 0.000 0.154 0.024 0.096
MX02 0.170 0.000 0,173 0.000 0.175 0.016 0,172 0.003 0.175 0.005 0.111
MX03 0.165 0.004 0.165 0,004 0.165 0.012 0.145 0.038 0.164 0.025 0.112
MX04 0.076 0.110 0.073 0.084 0.115 0.095 0.069 0.094 0.071 0.051 0.162
MX05 0.035 0.118 0.044 0.101 0.077 0.131 0.054 0.114 0.047 0.121 0.157
MX06 0.033 0.140 0.039 0.122 0.078 0.131 0.034 0.133 0.032 0.108 0.150
MX07 0.005 0.196 0.007 0.187 0.022 0.192 0.003 0.193 0.005 0.190 0.001
MX08 0.003 0.194 0.005 0.175 0.021 0,195 0.003 0.196 0.018 0.190 0.000
MX09 0.000 0.205 0.000 0.205 0.000 0.200 0.000 0.190 0.000 0.199 0.002

MX1O 0.067 0.121 0.071 0.104 0.090 0.106 0.041 0.143 0.067 0.124 0.065
MX11 0.057 0.123 0.077 0.106 0.091 0.120 0.060 0.125 0.048 0.125 0.068

MX12 0,025 0.152 0.029 0.137 0.062 0.146 0.030 0.136 0.028 0.139 0.116
MX13 0.079 0.112 0.096 0.093 0.111 0.078 0.070 0.099 0.066 0.084 0.112
MX14 0.081 0.096 0.084 0.133 0.108 0,088 0.059 0.115 0.075 0.069 0.091
MX15 0.136 0.064 0,126 0.075 0.115 0.037 0.081 0.095 0.098 0.067 0.107
MX16 0.062 0.120 0.066 0.102 0.084 0.124 0.054 0.140 0.074 0.128 0.046

MX17 0.141 0.051 0.140 0.063 0.136 0.033 0.141 0.025 0.112 0.026 0.131
M)xi (.032 0.155 0.038 0.126 0.065 0.144.A 0." ' 0.137 0.041 0.147 0.079

MX19 0.039 0.137 0.043 0.114 0.075 0.130 0.041 0.131 0.055 0.116 0.121
MX20 0.001 0,188 0.004 0.182 0.012 0.189 0.001 0,182 0.001 0,189 0.051
MX21 0.045 0.151 0.048 0.130 0.060 0.134 0.043 0.138 0.047 0.161 0.043
MX22 0.127 0.056 0.145 0.036 0.142 0.050 0,118 0.050 0.126 0.074 0.077
MX23 0.094 0.065 0.117 0.040 0.140 0.075 0.100 0.065 0.102 0.068 0.135
MX24 0.104 0.063 0.103 0.043 0.132 0.081 0.100 0.074 0.109 0.065 0.126

MX25 0.074 0.103 0.085 0.076 0.115 0.096 0.055 0.134 0.092 0.090 0.080
MX26 0.077 0.116 0.085 0.097 0.102 0.080 0.066 0.098 0.069 0.109 0.101
MX27 0.073 0.103 0.083 0.067 0.120 0.103 0.071 0.113 0.091 0.091 0.086
MX28 0.080 0.079 0,100 0.083 0.094 0.109 0.089 0.098 0.084 0.109 0.074

MX29 0.019 0.169 0.017 0.156 0.051 0.168 0,014 0.172 0.015 0.154 0.064
MX30 0.039 0.153 0,036 0.132 0.074 0.127 0,035 0.146 0.052 0.104 0,102
MX31 0.039 0.170 0.026 0.157 0,040 0.143 0.027 0.156 0023 0.159 0.059
MX32 0.088 0.109 0,088 0.070 0.113 0.086 0.071 0.134 0. :95 0.086 0.060
MX33 0.081 0,122 0.065 0.107 0.103 0.090 0.061 0.110 0.051 0.055 0.155
MX34 0.089 0.115 0.075 0.108 0.102 0.088 0.065 0.083 0.076 0.053 0.146
MX35 0.009 0.195 0.005 0.180 0.020 0.189 0.003 0.200 0.006 0.187 0.005

MX36 0.090 0.100 0.094 0.082 0.124 0.045 0.084 0.080 0.081 0.063 0.158
MX37 0.044 0.160 0.030 0.152 0.075 0.111 0.043 0,135 0.009 0.070 0.171
MX38 0.111 0.111 0.088 0.085 0.115 0.038 0.073 0.106 0.071 0.029 0.174
MX39 0.017 0.161 0.023 0.142 0.061 0.153 0.026 0.143 0.008 0.128 0.138
MX40 0,063 0.135 0.056 0.110 0.100 0.091 0.053 0.119 0,068 0.055 0.150
MX41 0.144 0.089 0.140 0.069 0.155 0.000 0.114 0,032 0.100 0.000 0.155
MX42 0.128 0.076 0.126 0.028 0.155 0.055 0.096 0.111 0.131 0.013 0.084
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APPENDIX I

DATA SET G

Data set G is a subset of data set D. G contains only the texture variables

from D that were shown in Section IV to mix linearly, even when the mean

intensities of the two image halves were not equal. The six texture measures in

* Table I-1 (HOM3, HOM15, LM2, LM3, LM4, and LM5) have been SIFTed to

row sums of 1.0.

I
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TABLE I-1. DATA SET G '

HOM3 HOMI5 LM2 LM3 LM4 LM5

MXO1 0.032 0.309 0.000 0.330 0.000 0,330
MX02 0.000 0,340 0.006 0.335 0.019 0.300 t
MX03 0.008 0.326 0.039 0.251 0.084 0.292
MX04 0.165 0.225 0.198 0.148 0.253 0.011
MXOS 0.203 0.155 0.221 0 C- 0.248 0,073
MX06 0.206 0.132 0.226 f-058 0.225 0.153
MX07 0.263 0.031 0.276 2.009 0.227 0.193
MX08 0.245 0.029 0.279 0.009 0-229 0,209
MX09 0.278 0.000 0.278 0.019 6.190 0.235
MXlO 0.195 0.169 0.245 0.055 0.286 0,051
MX1l 0.188 0.160 0.210 k -l95 0.218 0.129
MX12 0,238 0.107 0.249 0.0(7 0.232 0.107
MX 13 0.175 0.209 0.186 0. 132 0.199 0.100
MX14 0.237 0.193 0.182 0.083 0.213 0.091
MX15 0.135 0.207 0.161 0.136 0.189 0,173
MX16 0.191 0.158 0.224 0.063 0.286 0.077
MX 17 0,110 0.236 0,058 0.259 0.048 0.289
MXIM 0,202 0.105 0,232 0.074 0.!69 0.210
MX19 0.217 0.142 0.248 0.077 0.288 0.028
MX20 0.271 0.018 0.280 0.011 0.232 O.188
MX21 0.208 0.096 0.235 0.081 0.174 0.206
MX22 0.069 0.274 0.108 0.240 0.111 0.197
MX23 0.081 0.283 0.127 0.199 0.109 0.201
MX24 0,086 0.265 0.136 0.189 0.189 0.136
MX25 0.151 0.228 0.223 0.066 0.323 0.009
MX26 0.171 0.180 0.190 0,133 0.135 0.191
MX27 0,127 0,227 0.190 0.111 0.231 0.114
MX28 0.154 0.173 0.157 0.140 0.190 0.186
MX29 0.264 0.086 0.298 0.020 0.312 0.031
MX30 0.242 0.135 0.246 0.043 0.282 0.053
MX31 0,239 0.062 0.258 0.061 0.216 0.165
MX32 0.128 0.207 0.194 0.078 0.284 0.108
MX33 0.200 0.193 0.210 0.118 0.246 0.032
MX3I 0.187 0.179 0.188 0.157 0.129 0.163
MX35 0.263 0.029 0.289 0.000 0.276 0.142
MX36 0.163 0.248 0.158 0.165 0.230 0.035
MX37 0.275 0.135 0.238 0.072 0.279 0.000
MX38 0.162 0.220 0.193 0.130 0.263 0.032
MX39 0.232 0.100 0.247 0.055 0.189 0.177
MX40 0.204 0.186 0.210 0.089 0.223 0.088
MX41 0.112 0.252 0.119 0.252 0.038 0,227
MX42 0.055 0.307 0.144 0.113 0.278 0.103
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APPENDIX J

DATA SET H

Data set H is a subset of data set D. H contains four of the texture

variables from D that were shown in Section IV to mix linearly, even when the

mean intensities of image halves were not equal, plus the variable MEAN. The

five variables in Table J-1 (HOM3, HOM15, LM2, LM3, and MEAN) have been

SIFTed to row sums of 1.0.
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TAULE JT-1. VATA SET H

HIOM3 HO 5 LM2 LM3 MEAN

MXOI 0.039 0.381 0.000 0.406 0.175
MX02 0.000 6.422 0.008 0.415 0. 155
MX03 0.011 0.448 0053 0.345 0.143
MX04 0.219 0.299 0.263 0.198 0.021
MXO5 0.292 0.223 9.318 0.146 0.020
MX06 0.317 0.203 0.347 0.089 0,044
MX07 0.307 0.036 0.321 0.011 0.325
MX08 0.289 0.034 0.330 0.011 0.335
MX09 0.327 0.000 0.327 0.023 0.324
MX1O 0.225 0.195 0.283 0.064 0.233
Mxll 0.221 0 189 0.247 0.112 0.230
MX 12 0,312 0.141 0.327 0.087 0.133
MX13 0.216 c.258 0.230 0.163 0.134
MX14 0.288 0.235 0.222 0.102 0.153
MX15 0.179 0.275 0.213 0.180 0.153
MX16 0.218 0.181 0.256 0.072 0.273
MX17 0,148 0.319 0.078 0.351 0.103
MX 18 0.257 0.133 0.303 0.094 0.212
MXI9 0.279 0.182 0.318 0.099 0.123
MX20 0.345 0.023 0.356 0.014 0.262
MX21 0.243 0.112 0.275 0.095 0.274
MX22 0.079 0.312 0.123 0.273 0.213
MX23 0.109 0.378 0.170 0.267 0.076
MX24 0.113 0.348 0.179 0,248 0,112
MX25 0.179 0.272 0.265 0.079 0.205
MX26 0,213 0.224 0.236 0.166 0 160
MX27 0.155 0.278 0.232 0.136 0.199
MX28 0.191 0.214 0.194 0.173 0.228
MX29 0.307 0.099 0.334 0.023 0.236
MX30 0.306 0.171 0.311 0.955 9.158
MX31 0.289 0.074 0.311 0.074 0.252
MX32 0.156 0.252 0.237 0.095 0.260
MX33 0.265 0,255 0,278 0.156 0.046
MX34 0.248 0.234 0.249 0.208 0.062
MX35 0.303 0.034 0.333 0.000 0 .E30
MX36 0.219 0.334 0.212 0.222 0.013
MX37 0.378 0.186 0.327 0.099 0.009
MX38 0.230 0.312 0.273 0.18. 0.000
MX39 0.333 0.143 0.354 0.079 0.091
MX40 0.283 0.259 0.292 0.124 0.042
MX41 0.142 0.320 0.152 J.320 0.066
MX42 0.070 0,391 0,184 0.144 0.212
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APPENDIX K

DATA SET I

Data set I consists of 42 synthetic mixture images labeled NXl through

NX42. These mixtures correspond to samples MX1 through MX42 in data set

D (Appendix F), except that mean intensity levels in the components of the

mixture are not adjusted to a given level prior to mosaicking, as was the case for

data set D. Table K-1 contains numerical values for each sample in I for mean

intensity and for each of the six texture measures, which were shown in Section

IV to mix linearly when mean intensities of mixture components vary (HOM3,

HOM15, LM2, LM3, LM4, and LM5). Formatting and scaling of variables in

Table K-1 is the same as in Table C-1.

Table K-1 also contains the compositions of each mixture by ice type.

These are given at the bottom of the table.
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TABLE K1. VALUES OF TEXTURE MEASURES FOR DATA SET I

MEAS. S.F. NXI NX2 NX3 NX4 NX5 NX6 NX7 NX8

MEAN 102 1.200 1.286 1.355 1.728 1.736 1.656 0.418 0.413
14OM3 10 - 1 1.273 1.226 1.237 1.456 1.508 1.555 1.658 1.629
HOMI5 10-I 0.741 0.684 0.676 0.959 1.057 1.052 1.345 1.381
LM2 1016 0.883 0.832 0.841 0.407 0.347 0.259 0.106 0.104
LM3 101 3  1.331 1.265 1.146 0.793 0.647 0.574 0.401 0.387
LM4 lOz 1.056 0.991 0.954 0.711 0,698 0.708 0.687 0,677
LM5 Iog 2.884 2.709 2.830 2.134 2.234 2.543 2.625 2.660

% FY 0 0 0 0 0 0 100 100
% SY 0 0 0 100 100 100 0 0
% MY 100 100 100 0 0 0 0 0

TABLE K-I. continued

MEAS. S.F. NX9 NXIO NXII NX12 NXJ3 NXI4 NXI5 NX16

MEAN 10' 0.427 0.931 0.939 1.332 1.323 1.190 1.277 0.783
HOM3 10- 1 1.692 1.501 1.496 1.590 1.4P0 1.451 1.419 1.495
:, M15 10- 1  1.413 1.003 1.024 1.116 0.927 0.897 0.876 1.056
LM.2 10 e  0.095 0.316 0.362 0.422 0,577 0.543 0.892 0.331
LM3 i lot 0.434 0.550 6.651 0.741 0.870 0.758 1.078 0.548
LM4 1013 0.740 0.655 0.742 0,821 0,848 0.792 0.898 0.654
LM5 lol 2.742 2.212 2.430 2.698 2.567 2.514 2.720 2.276

% Fry 100 50 59 25 25 25 25 50

% SY 0 25 25 50 50 25 25 0
%MY 0 2b 25 25 25 50 50 50

252



*TABLE K-1. continued

MEAS. S.F. NX17 NX18 NX19 N) 10 NX21 NX22 NX23 NX24

* MEAN 102 1.446 1.010 1.387 0.785 0.728 1.029 1.556 1.445
HOM3 10-' 1.393 1.534 1.530 1.668 1.541 1.310 1.337 1.341
11OM15 10- 1  0.842 1.112 1.056 1.348 1.i83 0.795 0.774 0.824
LM2 1016 0.806 0.243 0.426 0.354 0.386 0.614 0.557 0.538
LM3 1ol  1.271 0.609 0.691 0.579 0.711 1.030 0.917 6.904
LM4 1013 1.037 0.790 0.716 0.807 0.861 0,892 0.882 0.812

* LM5 l0 2,947 2.646 2.304 2.925 2.794 2,539 2.539 2.457

% FY 0 50 25 75 75 25 0 0
% SY 50 50 75 25 0 0 75 25
% MY 50 0 0 0 25 75 25 75

TABLE K-I. continued

MEAS. S.F. NX25 NX26 NX27 NX28 NX29 NX30 NX31 NX32

MEAN 102 1.077 1.214 1.105 1.004 0.894 1.239 0.830 0.883
HOM3 10-1 1.429 1.482 I.A103 1.435 1,618 1.584 1.589 1.407
JIOMI5 10-1 0.879 0.957 0.846 0.955 1.214 1,091 1.252 0.936
LM2 1016 0.343 0.383 0.412 0.487 0.151 0.250 0.197 0.398
LM3 101 8  0.556 0.776 0.689 0.7' 1 0.427 0.499 0.559 0.594
LM4 10's 0.613 0.847 0.728 0.787 0.601 0.641 0.724 0.655
EM5 I0l  2. i18 2.572 2.364 2.566 2.172 2.227 2.516 2,351

% FY 33 33 33 33 67 33 67 33
% SY 33 33 33 33 33 67 0 0
% MY 33 33 33 33 0 0 33 6-

0

0

2%,
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TABLE K-1. continued

MEAS. S.F. NX33 NX34 NX35 NX36 NX37 NX38 NX39 NX40

MEAN 102 1,646 1.579 0.448 1.753 1.765 1.795 1.492 1.660
HOM3 10- ' 1.510 1,521 1.651 1.468 1.640 1.460 1.608 1.540

HOM15 10- 1 0.973 1.019 1.417 0.911 1167 0.989 1.230 1,034
LM2 1016 0.360 0.377 0.103 0.485 0.280 0,414 0204 0.336
LM3 1013 0.709 0.859 0.367 0.845 0.581 0.734 0.547 0.638
LM4 1o3 0.707 0.851 0.626 0.729 0.652 0.693 0.754 0.723
LM5 1o 2.174 2.511 2.466 2.180 2.097 2.171 2.564 2.315
% FY 0 0 100 0 0 0 0 0
% SY 67 33 0 100 100 100 100 100
%MY 33 67 0 0 0 0 0 0

TABLE K-I. continued

MEAS. S.F. NX41 NX42

MEAN 102 1,561 1.104
HOM3 10 - ' 1.405 1,314

1HOMI5 t0 - ' 0.863 0.791
LM2 1016 0.557 0,525
LM3 1o'3 1.143 0.686
LM4 10s 0.986 0.674
LM5 10 2.665 2.333

% FY 0 0
C SY 9 0

% MY 100 100
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APPENDIX L

DATA SET J

Data set J is a subset of data set I. 3 contains only the texture variables

from I that were shown in Section IV to mix linearly, even when the mean

intensities of the two image halves were not equal. The six texture measures in

Table L-1 (11OM3, HOM15, LM2, LM3, LM4, -and LM5) have been SIFTed to

row sums of 1.0.

255



TABLE L-1. DATA SET J

HOM3 HOMi5 LM2 LM3 LM4 LM5

NXO1 0.034 0.310 0.004 0.339 0.000 0.314
NX02 0.000 0.346 0.026 0.326 0.050 0.252
NX03 0.008 0.335 0.021 0.271 0.075 0.289
NX04 0.166 0.212 0.204 0.148 0.255 0.015
NX05 0.200 0.166 0.226 0.096 0.260 0.053
NX06 0.201 0.145 0.226 0.061 0.218 0.149
NX07 0.264 0.036 0.281 0,010 0.231 0.177
NX08 0.251 0.023 0.287 0.006 0.241 0.192
NX09 0,284 0.000 0.284 0.020 0.197 0.215
NXIO 0.191 0.185 0.234 0.061 0.285 0.044
NX11 0.183 0.172 0.210 0.093 0.218 0.124
NX12 0.237 0.130 0.179 0.118 0.157 0.179
NX13 0.173 0.214 0.126 0.166 0.145 0.176
NXI4 0.155 0.229 0.141 0.130 0.187 0.158
NX15 0.139 0.249 0.000 0.248 0.117 0.247
NXJ6 0.188 0.164 0.229 0.061 0.288 0.069
NX 17 0.111 0.243 0.033 0.290 0.013 0.310
NX18 0.195 0.127 0.240 0.074 0.173 0.191
NX19 0.213 0.164 0.191 0.110 0.244 0.079
NX20 0.272 0.036 0.193 0.063 0,157 0.279
NX21 0.208 0.104 0.195 0.110 0.132 0.252
NX22 0.061 0.287 0.119 0.234 0.123 0.177
NX23 0.079 0.290 0.140 0.190 0.127 0.173
NX24 0.082 0.268 0.147 0.185 0.178 0.140
NX25 0.143 0.241 0.226 0.064 0.319 0.008
NX26 0.168 0.194 0.196 0.130 0.141 0.171
NX27 0.120 0.249 0.193 0,107 0.231 0.101
NX28 0.142 0.202 0.1i 0.133 0.187 0.175
NX29 0.261 0.093 0.289 0.019 0.311 0.027
NX30 0.238 0.142 0.249 0.042 0.282 0.047
NX31 0.235 0.075 0,263 0.060 0,220 0.148
NX32 0.126 0.214 0.201 0.076 0.286 0.097
NX33 0.196 0.198 0.215 0.114 0,247 0.029
NX34 0.193 0.169 0.197 0.i56 0.137 0.148
NX35 0.275 0.010 0.299 0.000 0.285 0.131
NX36 0.171 0.228 0.168 0.163 0.237 0.032
NX37 0.284 0.115 0.246 0.071 0.284 0.000
NX38 0.170 0.200 0.203 0.129 0.270 0.029
NX39 0.244 0.083 0.257 0,056 0.198 0.163
NX40 0.212 9.168 0.220 0.089 0.231 0.081
NX41 0.121 0.237 0.132 0.253 0.048 0.210
NqX42 0.064 0.288 0.166 0.112 0.285 0.094
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APPENDIX M

DATA SET K

Data set K is a subset of data set I, K contains four of the texture variables

from I that were shown in Section IV to mix linearly, even when the mean

intensities of image halves were not equal, plus the variable MEAN. The five

variables in Table M-1 (HOM3, HOM15, LM2, LM3, and MEAN) have been

SIFTed to row sums of 1.0.

0
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TABLE M-1. DATA SET K

HO43 HOMIS LM2 LM3 MEAN

NXO1 0.085 0.336 0.004 0.367 0.209
NXO2 0.000 0.377 0.029 0.354 0.240
NX03 0.021 0.383 0.025 0.310 0.261
NX04 0.301 0.168 0.162 0.117 0.253
NX05 0.363 0,132 0.179 0.076 0.250
NX06 0.401 0.126 0.197 0.053 0.223
NX07 0.649 0.039 0.301 0.011 0.001
NX08 0.645 0.026 0.321 0,007 0.000
NX09 0.680 0.000 0.296 0.021 0.003
NXIO 0.421 0.178 0.225 0.059 0.117
NX1I 0.414 0.170 0.207 0.092 0.118
NX12 0.464 0.110 0.153 0.100 0.172
NX13 0.358 0.192 0.113 0.149 0.188
NX14 0.344 0.221 0.136 9.126 0.174
NX 15 0.311 0.242 0.000 0.242 0.205
NX16 0.443 0.169 0.235 0.063 0.090
NX 17 0.242 0.231 0.032 0.276 0.220
NX 18 0.440 0.125 0.236 0.073 0.125

NX19 0.413 0.139 0.161 0.093 0.194
NX20 0.628 0.036 0.195 0.063 0.078
NX21 0.499 0.109 0.204 0.115 0.073
NX22 0.151 0.308 0.127 0.251 0.163
NX23 0.169 0.269 0-130 0.176 0.256
NX24 0.181 0.259 0.142 0.178 0.239
NX25 0.323 0.237 0.222 0.063 0.155
NX26 0.357 0.179 0.181 0.120 0.164
NX27 0.279 0.253 0.196 0.109 0.163
NX28 0.341 0.211 0.168 0.139 0.142
NX29 0.541 0.084 0.260 0.017 0.098
N'4X30 0.469 0.122 0.214 0.056 0.159
NX31 0.524 0.073 0.256 0.058 0.088
NX32 0.324 0.241 0.226 0.086 0.124
NX33 0.356 0.156 0.170 0.090 0.227
NX34 0,363 0.138 0.161 0.127 0.211
NX35 0.666 0.011 0.315 0.000 0.008
NX36 1.309 0.180 0.132 0.128 0.251
NX37 0.467 0.082 0.176 0.051 0,224
NX38 0.309 0.159 0.161 0.102 0.268
NX39 0.472 0.070 0.216 0.047 0.196
NX40 0.390 0.135 0.176 0.071 0.228
NX41 0.239 0.205 0.114 0.218 0.225
NX42 0.168 0.330 0.179 0.129 0,194
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APPENDIX N

DATA SET L

Data set L is a SIFTed version of data set I.



TABLE N-i. DATA SET L

11OM3 ttOM15 LM2 LM3 LM4 LM5 MEAN

NXO1 0.030 0.270 0.003 0.296 0.000 0.274 0.127
NX02 0.000 0.307 0.023 0.289 0.044 0.223 0,114
NX03 0.007 0.303 0.019 0.245 0.068 0.261 0.096
NX04 0.163 0.209 0.201 0.146 0.251 0.014 0.016
NX05 0.197 0.164 0.222 0.095 0.256 0.052 0.014
NX06 0.195 0.141 0.220 0.059 0.212 0.145 0.028
NX07 0.206 0.028 0,219 0.008 0.180 0.138 0.221
NX08 0.194 0.018 0.222 0.005 0.187 0.149 0.225
NX09 0.222 0.000 0.222 0.015 0.154 0.168 0.219
NXlO 0.159 0.154 0.194 0.051 0.237 0.036 0,168
NX11 0.153 0.144 0.176 0.078 0.182 0.103 0.164
NX12 0.215 0.118 0.163 0.107 0.142 0.163 0.092
NXI3 0.156 0.193 0.113 0.150 0.131 0.159 0.098
NX14 0.136 0.201 0.123 0.114 0.164 0.138 0.123
NXI5 0,124 0.221 0.000 0.220 0.104 0.219 0.112

NX16 0.152 0.133 0.185 0.049 0.233 0.055 0.193
NX17 0.103 0.225 0.031 0269 0.012 0.287 0.073
NXI8 0.167 0.109 0.06 0. 63 0,148 0. i63 0,144
NXi9 0.194 0,150 0.174 0,100 0.222 0.072 0.088
NX20 0.225 0.029 0.160 0.052 0.130 0.231 0.173
NX21 0.168 0.084 0.158 0.09 0.106 0.204 0.192
NX22 0.052 0.242 0.100 0.197 0.103 0.149 0.159
NX23 0.075 0.275 0.132 0.180 0.120 0.164 0.054
NX24 0.076 0.247 0.136 0.170 0.164 0.130 0.077
NX25 0.122 0.206 0.193 0.055 0.272 0.007 0.145
NX26 0.1419 0.172 0.173 0.115 0.125 0.152 0.114
NX27 0.103 0.215 0.166 0.092 0.199 0.087 0.138

NX23 0.120 0.171 0.136 0.112 0.159 0.148 0.154
NX29 0.2.!.7 0.977 0.240 0.016 0.258 0.023 0.168
NX30 0,211 0.126 0.221 0.038 0,251 0.042 0.111
NX31 0.194 0.062 0.217 0.050 0.182 0.123 0.174
NX32 0.104 0.177 0.166 0.063 0.235 0.080 0.176
NX33 0.190 C.191 0.208 0.111 0.239 0.028 0.034
NX34 0.184 0.161 0.188 0.149 0.131 0.142 0.045
NX35 0.213 0.008 0.231 0.000 0.220 0.101 0.227
NX36 0.169 0.226 0.107 0.162 0.234 0.032 0.010
NX37 0.282 0.114 0.244 0.071 0.282 0000 0.007
NX38 0.170 0.200 0.203 0.129 0.270 0.029 0.000
NX39 0.229 0.078 0-241 0.052 0.185 0.153 0.061
NX40 0.206 0.163 0.213 0.086 0.224 0.078 0.030
NX.I 1 0.114 0.225 0.125 0.240 0.046 0.199 0.050
NX42 0.055 0.247 0.134 0.096 0.244 0,081 0.145
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APPENDIX 0

DATA SET M

Data set M consists of 10 mixture images. Samples BX1 through BX4

are images of natural mixtures of first-year and multiyear ice. Samples BX5

through BX1O are large synthetic mixtures constructed by mosaicking samples

from data set I. Table 0-1 contains numerical values for each sample in M for

mean intensity and for each of the six texture measures, which were shown in

Section IV to mix linearly when mean intensities of mixture components vary

(HOM3, HOM15, LM2, LM3, LM4, LM5). Formatting and scaling of variables

in Table 0-1 is the same as in Table C-1.

Table K-i also contains compositions of each mixture by ice type. These

are given at the bottom of the table.
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TABLE 0-1. VALUES OF TEXTURE MEASURES FOR DATA SET M

MEAS. S.F. BX1 BX2 BX3 BX4 BX5 BX6 BX7 BX8

MEAN 102 0.508 0.999 0.720 0.839 0.427 1.721 1.284 1.073
HOM3 10- ' 1.564 1.295 1.458 1.319 1.653 1.484 1.277 1.564
HOMI5 10- ' 1.262 0.781 1.100 0.867 1.384 0.956 0.731 1.152
LM2 1o6 0.375 1.016 0.495 0.945 0.104 0.384 0.783 0.245
LM3 1013 0.623 1.138 0.742 0.992 0.410 0.724 1.161 0.576
LM4 10a3  0.738 0.912 0.779 0.839 0.692 0.735 0.950 0.723
LM5 Iog 2.578 2.641 2.591 2.563 2.627 2.321 2.685 2.493

% FY 90 40 69 60 100 0 0 50
% SY 0 0 0 0 0 100 0 50
% MY 10 60 31 40 0 0 100 0

TABLE 0-1. continued

MEAS. S.F. BX9 BX1O

MEAN 10' 0.889 1.525
HOM3 10- ' 1.462 1.378
HOM15 10- ' 1.044 0.838
LM2 1016 0.441 0.585
LM3 1013 0.808 0.976
LM4 101' 0.839 0.868
LM5 l0 2.681 2.544

% FY 50 0
% SY 0 50
% MY 50 50

262



APPENDIX P

DATA SET N

Data set N is a subset of data set M. N contains MEAN plus four of the

texture variables from N, which were shown in Section IV to mix linearly, even

when the rnfe.,r intensities of the two image halves were not equal. The five

tex;.ue measures in Table P-1 (HOM3, HOM15, LM2, LM3, and MEAN) have

been SIFTed to row sums of 1.0.

TABLE P-i. DATA SET N

HOM3 HOMI5 LM2 LM3 MEAN

BXO1 0,266 0.065 0.245 0.099 0.326
BX02 0.019 0.370 0.000 0.388 0,223

BX03 0.178 0.161 0.211 0.164 0.286
BX04 0.046 0.325 0.032 0.318 0.280
BX05 0.333 0.000 0.333 0.000 0.333
BX06 0.238 0.283 0.299 0.180 0.000
BX07 0.000 0.386 0.099 0.386 0.130
BX08 0.284 0.132 0.315 0.082 0.186
BX09 0.175 0.185 0.224 0.188 0.228
BX 10 0.108 0.337 0.190 0.304 0.061
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APPENDIX Q

DATA SET 0

Data set 0 is a subset of data set M. 0 contains only the texture variables

from M, which were shown in Section IV to mix linearly, even when the mean

intensities of the two image halves were not equal. The six texture measures in

Table Q-1 (HOM3, HOM15, LM2, LM3, LM4, and LM5) have been SIFTed to

row sums of 1.0.

TABLE Q-1. DATA SET 0

HOM3 HOM15 LM2 LM3 LM4 LM5

BXO1 0.220 0.054 0.203 0.082 0.237 0.204
BX02 0.016 0.311 0.000 0.327 0.050 0.296
BX03 0.144 0.130 0.171 0.133 0.199 0.222
BX04 0.039 0.278 0.027 0.272 0.151 0.233
BXO5 0.260 0.000 0.260 0.000 0.260 0.219
BX06 0.175 0.208 0.220 0.133 0.265 0.000
BX07 0.000 0.307 0.078 0,307 0.000 0.307
BX08 0.216 0.100 0.239 0.062 0.249 0.134
BX09 0.137 0.145 0.176 0.148 0.120 0.275
BX10 0.082 0.256 0.145 0.231 0.097 0.188
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